Title | Extrapolated full waveform inversion with deep learning |
Publication Type | Manuscript |
Year of Publication | 2019 |
Authors | Sun, H, Demanet, L |
Abstract | The lack of low frequency information and a good initial model can seriously aect the success of full waveform inversion (FWI), due to the inherent cycle skipping prob- lem. Computational low frequency extrapolation is in principle the most direct way to address this issue. By considering bandwidth extension as a regression problem in machine learning, we propose an architecture of convolutional neural network (CNN) to automatically extrapolate the missing low frequencies without preprocessing and post-processing steps. The bandlimited recordings are the inputs of the CNN and, in our numerical experiments, a neural network trained from enough samples can predict a reasonable approximation to the seismograms in the unobserved low frequency band, both in phase and in amplitude. The numerical experiments considered in this paper are set up on simulated P-wave data. In extrapolated FWI (EFWI), the low-wavenumber components of the model are de- termined from the extrapolated low frequencies, before proceeding with a frequency sweep of the bandlimited data. The proposed deep-learning method of low-frequency extrapolation shows adequate generalizability for the initialization step of EFWI. Numerical examples show that the neural network trained on several submodels of the Marmousi2 P-wave velocity model is able to predict the low frequencies for the BP 2004 benchmark model. Additionally, the neural network can robustly process seismic data with uncertainties due to the existence of noise, unknown source wavelet, and dierent nite-dierence scheme in the forward modeling operator. Finally, this approach is not subject to the structural limitations of other methods for bandwidth extension, and seems to oer a tantalizing solution to the problem of properly initializing FWI. |