Laboratory hydraulic fracturing of granite: Acoustic emission observations and interpretation

TitleLaboratory hydraulic fracturing of granite: Acoustic emission observations and interpretation
Publication TypeJournal Article
Year of Publication2019
AuthorsLi, BQ, da Silva, BGonçalves, Einstein, H
JournalEngineering Fracture Mechanics
Volume209
Pagination200 - 220
Date PublishedJan-03-2019
ISSN00137944
Abstract

Hydraulic fracturing is routinely used, but the fracturing processes that occur when rocks are hydraulically-fractured are not entirely understood and require further investigation. This study presents the acquisition, analysis and interpretation of acoustic emissions data from a series of laboratory hydraulic fracturing experiments on granite. Specimens with different orientations of two pre-cut flaws were tested under both 0 MPa and 5 MPa of vertical uniaxial stress to understand the effect of the external stress conditions. Acoustic emissions data are related to corresponding visual observations made using high-resolution and high-speed imaging. We find that in general, (1) the AE begin to occur at approximately 80% of peak pressure, (2) the focal mechanisms suggest that 55–60% of the radiation pattern could be explained by a double couple mechanism and is well-explained by simulation results, (3) hypocenter locations tended to agree well with visually observed white patching (process zone) and crack patterns, (4) spatio-temporal analysis revealed points in time at which microcrack coalescence were detected by AE, (5) that the AE could be used to make a non-unique prediction of crack initiation, and lastly (6) that exponential AE energy accumulation in the last 5–10 s prior to crack initiation can be modelled by time-to-failure methods.

URLhttps://www.sciencedirect.com/science/article/pii/S0013794418310233?via%3Dihub
DOI10.1016/j.engfracmech.2019.01.034
Short TitleEngineering Fracture Mechanics

Applications: