MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2019

A Deep Learning Architecture for Earthquake Detection and Seismic Phase Identification

Manuel Florez GRADUATE STUDENT [EARTH, ATMOSPHERIC AND PLANETARY SCIENCES]

Subduction Zones?

Earthquakes between 50-300 km Intermediate-Depths >350-700 km Deep

Due to high T-P, brittle rheology is not guaranteed.

Composition? Water content? Temperature?

Mechanism is not clear

Characterizing Seismicity along Double Seismic Zones

Largest Double Seismic Zone (DSZ) catalog 32 slab segments, 10-150 Ma. DSZ everywhere

Florez and Prieto, 2019

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2019

Earthquake Detection

Traditional Detection methods rely calculating the energy in a seismogram:

Energy in Short term window Energy in Long Term Window

- Work well only when SNR > 5.0
- Similarity based methods: Require a set of known templates, which are correlated against a continuous stream of data.
- However, in seismic catalogs we have millions of labelled data points!

Training Data

Japan Subset of 82,654 high quality hypocenters 640,232 P-wave picks 152,215 S-wave picks Northern Chile Subset of 10,014 high quality hypocenters No Analyst picks avaible for training 68,134 P-wave detections using templete matching 54,890 S-wave detections using template matching Southern California: 878,232 P-wave picks 538,232 S-wave picks

Phase Detection

6 Convolutional Layers

• 2 Long Term Short Term Memory layers (LSTM)

Recurrent Neural Network:

• 2 Dense Layers:

Phase Detection

• Input: 3 Component waveforms:

• A prediction for each time sample MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2019

Phase Association

Scalable and grid free method using RNNs

Ross et al, 2019

Accurate S Wave picking

• Unet Architecture

Accurate S Wave picking

Unet Architecture

Accurate S Wave picking

• Unet Architecture

10 sec

Detection Results

Precision :
$$P = \frac{T_p}{T_p + F_p}$$
,
Recall : $R = \frac{T_p}{T_p + F_n}$,

- Precision P: 0.96
- Recall P: 0.89
- Precision S: 0.86
- Recall S: 0.78

Results

Comparison with template matching:

Run For 1 month after 8.3 Mw, September 2015 Illapel EQ CSN: 421 Template Matching: 2 891 Deep Learning: 2 493