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Extrapolated full-waveform inversion with deep learning 1

◼ Cycle-skipping problem of FWI 

Sun and Demanet, 2020, Geophysics

◼ Low-frequency extrapolation

▪ Signal processing
Hu, 2014; Li and Demanet, 2016
▪ Deep learning
Sun and Demanet, 2018; Jin et al., 2018;
Ovcharenko et al., 2018;



Related contributions and challenges on field data
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• Probably insufficient accuracy for full-waveform inversion
• Wang et al., 2020, SEG Technical Program Expanded Abstracts 2020
• …

• Training on real data (collected from the same region as the test data)
• Aharchaou and Baumstein, 2020, The Leading Edge
• Zhang et al., 2021, IEEE Geoscience and Remote Sensing Letters

• Training on synthetic data
• Fang et al., 2020, Geophysics
• Ovcharenko, 2021, KAUST Ph.D. thesis

Challenges: 
• Unavailability of real low-frequency data for training, in particular < 2 Hz
• Poor generalization from synthetic to real data

Our strategy: Semi-supervised learning with real data without real labels

Field-data 
examples:



Field raw data in the time and frequency domain
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0-1 Hz                        1-2 Hz                        2-3 Hz                        3-4 Hz 4-5 Hz                       4-10 Hz

The data below 3 Hz are totally missing.
The minimum reliable frequency is 4 Hz.

4 Hz

Field raw data in different frequency bands
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◼ Starting from the given initial model, how low should the starting frequency be to 
avoid the cycle-skipping problem?

◼ Simulate low-frequency data on the ‘tomography’ model

Determination of starting frequency

initial model‘tomography’ model
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1 Hz FWI result

Determination of starting frequency
◼ Starting from the given initial model, how low should the starting frequency be to 

avoid the cycle-skipping problem?

3 Hz FWI result

2 Hz FWI result

‘tomography’ model

1 Hz
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CycleGAN (Zhu et al., 2017)

𝐿𝑐𝑦𝑐𝑙𝑒 𝑮𝑯𝑳, 𝑮𝑳𝑯, 𝐻

𝐿𝐺𝐴𝑁 𝑮𝑯𝑳, 𝑫𝑳, 𝐻

𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑮𝑯𝑳, 𝐿

𝐿𝑑𝑖𝑠𝑐 𝑮𝑯𝑳, 𝑫𝑳, 𝐻, 𝐿

𝐿 𝑮𝑯𝑳, 𝑫𝑳, 𝐻, 𝐿 =

𝜆1

𝜆2

𝜆3

◼ Cycle-Consistent Adversarial Networks (forward cycle)

(Sun, Nammour, Rivera, Williamson, 
and Demanet, 2022, under review)

Learning with real data without real labels
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𝐿𝑐𝑦𝑐𝑙𝑒 𝑮𝑳𝑯, 𝑮𝑯𝑳, 𝐿

𝐿𝐺𝐴𝑁 𝑮𝑳𝑯, 𝑫𝑯, 𝐿

𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑮𝑳𝑯, 𝐻

𝐿𝑑𝑖𝑠𝑐 𝑮𝑳𝑯, 𝑫𝑯, 𝐿, 𝐻

𝐿 𝑮𝑳𝑯, 𝑫𝑯, 𝐿, 𝐻 =

𝜆1

𝜆2

𝜆3

CycleGAN (Zhu et al., 2017)

◼ Cycle-Consistent Adversarial Networks (backward cycle)

(Sun, Nammour, Rivera, Williamson, 
and Demanet, 2022, under review)

Learning with real data without real labels
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◼ Preprocess field data for 4-10 Hz band-limited data as image domain H 

f-k filtering

bandpass 
filtering 

muting

4-10 Hz band-limited field dataraw shot gather

distance axis
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Training data preparation for the field data
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generation of a training model

generation of low-frequency source wavelets

◼ Simulate synthetic low-frequency data as image domain L

synthetic 0-1 Hz data    synthetic 0-4 Hz data

forward 
modeling

10
Training data preparation for the field data



real image 
(field band-limited data) 

predicted image 
(extrapolated data) 

reconstructed image

synthetic image 
(simulated low-frequency data) 

predicted image 
(extrapolated data) reconstructed image

11Field-data extrapolation result: from 4-10 Hz to 0-1 Hz
◼ Forward Cycle: Starting from field 4-10 Hz band-limited data

◼ Backward Cycle: Starting from synthetic 0-1 Hz low-frequency data 



real image 
(field band-limited data) 

predicted image 
(extrapolated data) 

reconstructed image

synthetic image 
(simulated low-frequency data) 

predicted image 
(extrapolated data) reconstructed image

12Field-data extrapolation result: from 4-10 Hz to 0-4 Hz
◼ Forward Cycle: Starting from field 4-10 Hz band-limited data

◼ Backward Cycle: Starting from synthetic 0-4 Hz low-frequency data 



FWI with only extrapolated low-frequency dataBad initial model

EFWI-CNN started from extrapolated low-frequency dataFWI started from the bad initial model

Cost function: L2 norm of normalized (trace by trace) difference in time domain

13Extrapolated FWI with 3-10 Hz band-limited field data



FWI with only extrapolated low-frequency dataFWI with synthetic data simulated on ‘tomography’ model  

EFWI-CNN started from extrapolated low-frequency data
FWI started from synthetic data 
simulated on ‘tomography’ model 

Cost function: L2 norm of normalized (trace by trace) difference in time domain

14Extrapolated FWI with 3-10 Hz band-limited field data



FWI using 3-10 Hz band-limited field data starting models

15Quality control: Vertical section comparison



Summary
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▪ CycleGAN can be trained using unpaired images of field band-limited and synthetic 
low-frequency shots in the time domain for robust low-frequency extrapolation of the 
field data.

▪Our field-data results validate the benefit of extrapolated low-frequency data for 
mitigating the cycle-skipping problem of full-waveform inversion.

▪ The wavelet to synthetize the low-frequency data on the training model should be 
used for full-waveform inversion using the extrapolated low frequencies.



Limitations and future work
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▪more robust FWI with the extrapolated data

▪QC with RTM and image gathers

▪ interpretable AI? 

▪ surface waves

Sun and Demanet, 2022, Extrapolated surface-wave dispersion inversion: 
SEG, Expanded Abstracts, in press.
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