Monitoring South-West Greenland's ice sheet melt with ambient seismic noise

Aurélien Mordret

Postdoc associate, Department of EAPS

In collaboration with Dylan Mikesell ^{1,2}, Christopher Harig ³, Brad Lipovsky ⁴ & German Prieto ¹

¹ MIT, ² Boise State U., ³ Princeton U., ⁴ Harvard U.

MIT Earth Resources Laboratory 2016 Annual Founding Members Meeting May 18, 2016

- 1) What is happening in Greenland? And why does it matter?
- 2) Why use seismic waves to monitor ice sheets?
- 3) Passive seismic monitoring in Greenland
- 4) Forward modeling and interpretation
- 5) Conclusion and perspectives

What is happening in Greenland?

- Ice mass loss as seen from GRACE data
- Global accelerating trend
- Spatio-temporal pattern with stronger losses in coastal areas
- Temporal variability controlled by oceanic and atmospheric circulations

Slide 3 2016 Annual Founding Members Meeting

Why does it matter?

60-80 m elevation if all ice from Greenland and Antarctica melted

Slide 4 2016 Annual Founding Members Meeting

What should we monitor?

The key parameter to measure is the quantity of ice that melted into the ocean:

M = Snow accumulation – Ablation – Calving

With

Ablation = Runoff - Refreeze

- Estimation of each of these parameters is difficult
- Large uncertainties
- Can depend on many other parameters (snow compaction rate, snow/ice density profile, portion of refreeze...)
- M directly measured by gravimetry and/or GPS
- So, why bother with seismic data?

Slide 5 2016 Annual Founding Members Meeting

- 1) What is happening in Greenland? And why does it matter?
- 2) Why use seismic waves to monitor ice sheets?
- 3) Passive seismic monitoring in Greenland
- **4)** Forward modeling and interpretation
- 5) Conclusion and perspectives

Why use seismic waves to monitor ice sheets?

Slide 7 2016 Annual Founding Members Meeting

Why use seismic waves to monitor ice sheets? :

An other string to the bow

Slide 8 2016 Annual Founding Members Meeting

Why use seismic waves to monitor ice sheets? :

An other string to the bow

Slide 9 2016 Annual Founding Members Meeting

Why use seismic waves to monitor ice sheets? :

An other string to the bow

Examples of seismic monitoring studies in ice-sheet and glacier context:

Roosli et al. (2014): Icequakes & moulin water level correspondence

correlation

Mikesell et al. (2012): Repetitive icequakes at Bench Glacier, Alaska (USA).

Ekstrom et al. (2006): Seasonal and long-term recurrence of icequakes in Greenland

Slide 10 2016 Annual Founding Members Meeting

- 1) What is happening in Greenland? And why does it matter?
- 2) Why use seismic waves to monitor ice sheets?
- 3) Passive seismic monitoring in Greenland
- 4) Forward modeling and interpretation
- 5) Conclusion and perspectives

Ice mass changes from GRACE in 2012-2013

Modified after Tedesco et al. (2015)

Christopher Harig pers. com. (2015)

2012-2013 = Extreme years for ice-melting in South-West Greenland

Slide 12 2016 Annual Founding Members Meeting

Dv/v in 2012-2013 (0.1-0.3 Hz)

Slide 13 2016 Annual Founding Members Meeting

Dv/v in 2012-2013

Slide 14 2016 Annual Founding Members Meeting

- 1) What is happening in Greenland? And why does it matter?
- 2) Why use seismic waves to monitor ice sheets?
- 3) Passive seismic monitoring in Greenland
- 4) Forward modeling and interpretation
- 5) Conclusion and perspectives

 Assume a homogeneous load change when doing the averaging

Slide 16 2016 Annual Founding Members Meeting

Slide 17 2016 Annual Founding Members Meeting

- Assume a homogeneous load change when doing the averaging
- Viscoelastic modeling: σ ≈ ηέ
- $(Dv/v)/strain = 0.5\%/\mu strain$
- Fit the data at 77%

Slide 18 2016 Annual Founding Members Meeting

- Assume a homogeneous load change when doing the averaging
- **Viscoelastic** modeling: $\sigma \approx \eta \epsilon$
- (Dv/v)/strain = 0.5%/µstrain
- Fit the data at 77%
- **Poroelastic** modeling of seismic velocity variations due to pore-pressure variations (Tsai 2011)
- Incorporate a **till layer** (2.85 m) to fit the delay
- With reasonable parameter values (from the literature), we fit the data at 90%

Slide 19 2016 Annual Founding Members Meeting

Velocity changes due to pore-pressure variations

Mordret et al. (2016, Science Advances)

Slide 20 2016 Annual Founding Members Meeting

- 1) What is happening in Greenland? And why does it matter?
- 2) Why use seismic waves to monitor ice sheets?
- 3) Passive seismic monitoring in Greenland
- **4)** Forward modeling and interpretation
- 5) Conclusion and perspectives

Conclusions and perspectives

- Seismic methods can provide fine spatial and temporal resolution for monitoring applications
- Seismic waves traveling in the crust are sensitive to changes in the ice sheet
- The loading and unloading of the ice induce pore-pressure variations in the crust which can be detected through seismic velocity monitoring

- Possibility to compute a map of ice-mass changes through tomographic inversion if more stations
- → Future application to the Antarctica ice sheet

Massachusetts

Institute of

Technology

Seismic data in Greenland

Slide 23 2016 Annual Founding Members Meeting

Seismic data processing

- 1) Demean, detrend, remove instrumental response of daily data
- 2) Filter between 0.1 0.3 Hz
- 3) Cut into 4 hours segments (50% overlap)
- 4) Clipped at 3 std of each segment
- 5) Spectral whitening in 0.1 0.3 Hz
- 6) Cross-correlate each segment
- 7) Stack for daily correlations
- 8) Stack daily correlations with a 90 days running average
- 9) Measure relative velocity variations

Noise correlations

Stretching vs. MWCS

Influence of number of days stacked

Influence of the window in the coda

0.1

0.09

0.08

0.07

0.06 0.05

0.04

0.03

0.02

0.01

Jan-14

Jul-13

dv/v uncertainty (%)

Depth sensitivity of Rayleigh waves in Greenland

Modeling

Dv/v modeling parameters

Table 1: Parameters used in the dv/v modelling.			
Parameter	Symbol	Value	Reference
Glaciostatic pressure	P_g	1600 Pa	from data
Ice area	S_i	$6.5 \cdot 10^{11} \text{ m}^2$	from data
Gravitational acceleration	g	9.81 m/s ²	
Pressure field wave number	k	$2\pi/(60 \text{ km})$	Jiang et al[11]
Depth of investigation	z	5 km	from data
S-wave velocity	Vs	3300 m/s	Kumar et al[56]
Vp/Vs ratio	Vp/Vs	1.8	Kumar et al[56]
Upper crust density	$ ho_c$	2700 kg/m ³	Schmidt-Aursch et al[57]
P-wave velocity	Vp = Vs(Vp/Vs)	5940 m/s	
Poisson's ratio	ν	0.2768	
Young's modulus	E	$7.5 \cdot 10^{10}$ Pa	
Mantle viscosity	η	$10^{21} \text{ Pa}\cdot\text{s}$	
Viscoelastic relaxation time	T	10^{11} s	
Lamé's first parameter	λ	3.65·10 ¹⁰ Pa	
Shear modulus	μ	2.94·10 ¹⁰ Pa	
Murnaghan constant	m	-2.77·10 ¹⁶ Pa	from inversion
Distance from the ice	x	12.5 km	
Biot's coefficient	α	0.7	Tsai[34]
Hydraulic diffusivity of the crust	K_c	0.5 m ² /s	Shapiro et al[58]
Angular frequency	ω	$2\pi/(365 \text{ days})$	
Till layer thickness	z_t	2.85 m	from inversion
Hydraulic diffusivity of till	K_t	$5 \cdot 10^{-6} \text{ m}^2/\text{s}$	Iverson et al[43]

