MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2019

Extrapolated Full Waveform Inversion with Deep Learning

Hongyu Sun and Laurent Demanet [EARTH, ATMOSPHERIC AND PLANETARY SCIENCES]

Motivation: full waveform inversion

Forward modeling

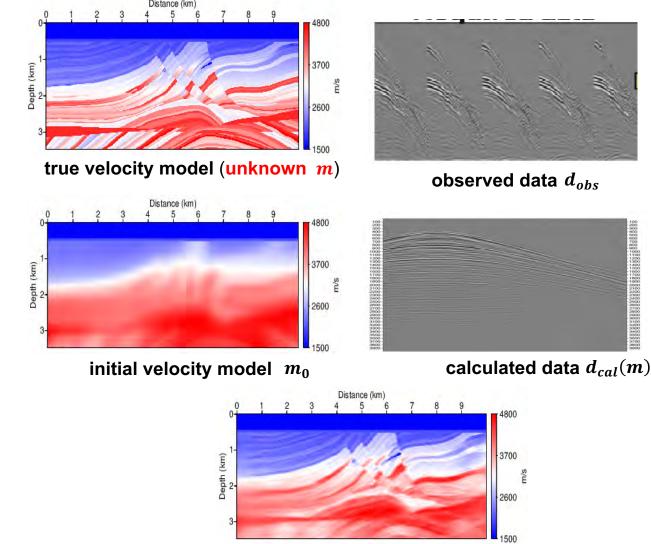
$$\boldsymbol{m}(\boldsymbol{x})\frac{\partial^2 u(\boldsymbol{x},t)}{\partial t^2} - \Delta u(\boldsymbol{x},t) = f(\boldsymbol{x},t)$$

Inversion objective function

 $J(\boldsymbol{m}) = \|d_{cal}(\boldsymbol{m}) - d_{obs}\|_2$

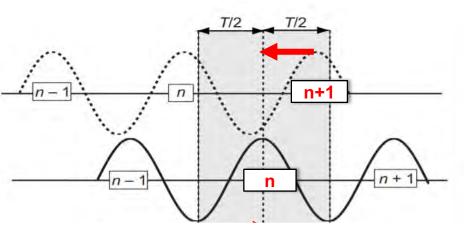
Optimization

$$\boldsymbol{m}_{k+1} = \boldsymbol{m}_k - \boldsymbol{H}^{-1} \, \nabla J(\boldsymbol{m}_k)$$

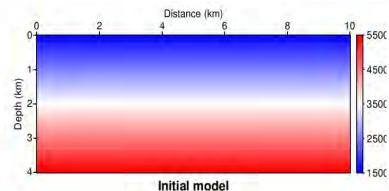


inversion result

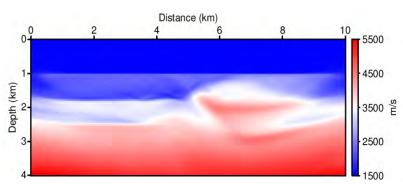
Motivation: Cycle-skipping

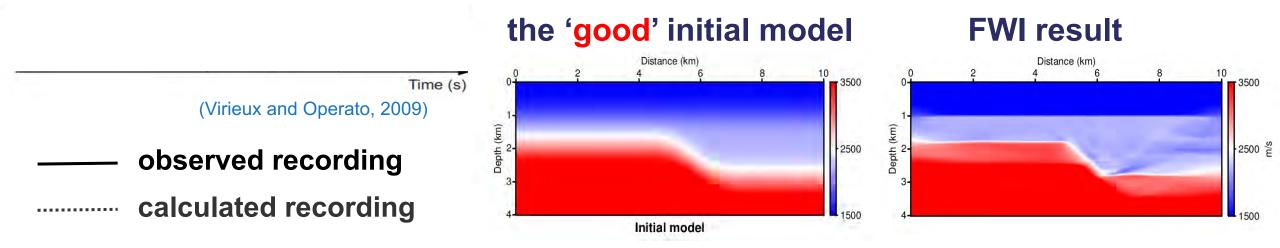


the 'bad' initial model

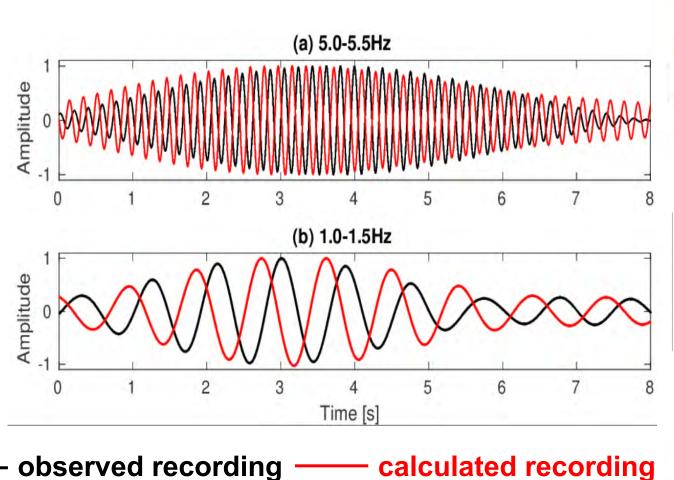


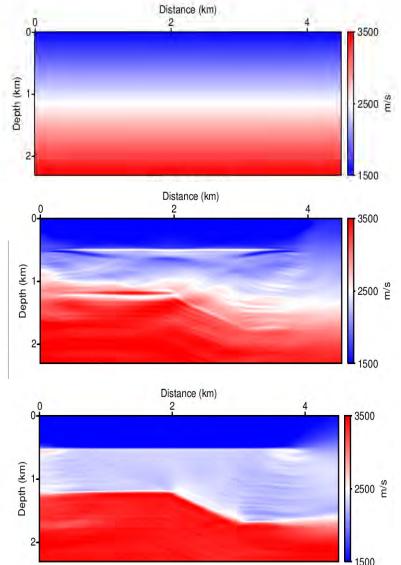
FWI result





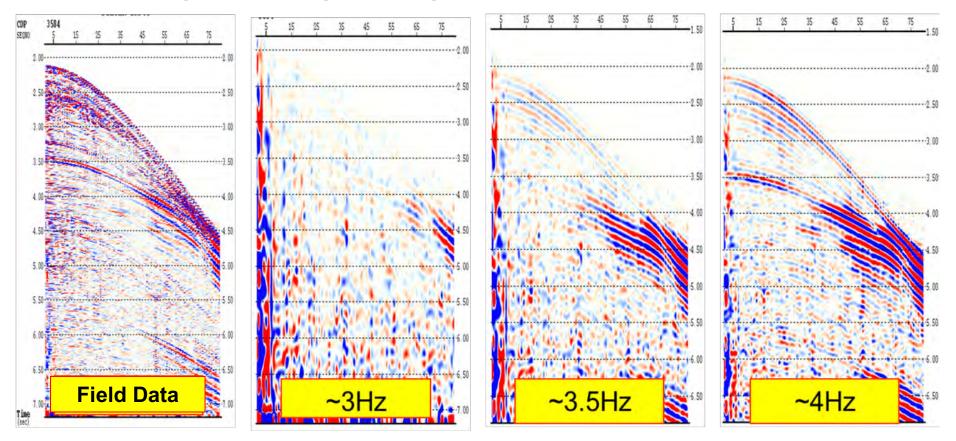
Motivation: Cycle-skipping





Motivation: Cycle-skipping

Low frequency data (<3Hz) are hard to acquire in the field



(Han, 2014)

Bandwidth Extension with Deep learning

Deep neural networks (DNN):

$$y = f(x, w) = f_L(...f_2(f_1(x)))$$

where

- *x*: seismograms bandlimited to high frequencies
- y: the same seismograms bandlimited to low frequencies
- w: parameters of DNN to be learned

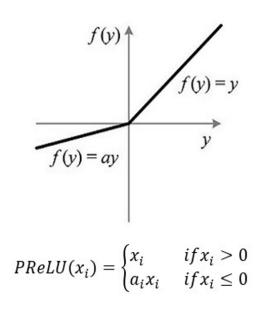
Training: learning w with known y

$$\boldsymbol{J}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} L(y_i, f(x_i, \boldsymbol{w}))$$

Test (predict) f(x, w)

Convolutional Neural Networks

- **Convolution filter:** 128 64 128 64 1
- Activation function: PReLU (He et al., 2015)



• **Optimizer:** Adam (Kingma and Ba, 2014)

with a mini-batch of 20 samples

Input: x Sum up five combined units **Convolution layer Batch normalization layer PReLU** layer Fully connected layer

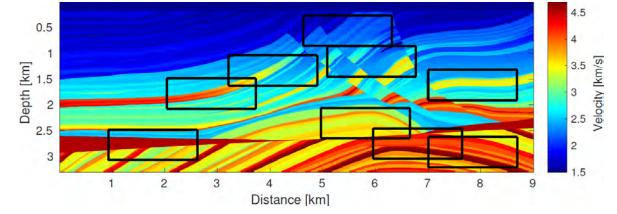
Output: y

Architecture

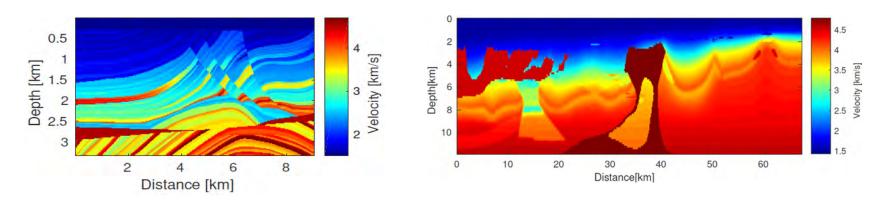
Numerical experiments

How to collect the training data?

Training model: known low frequencies



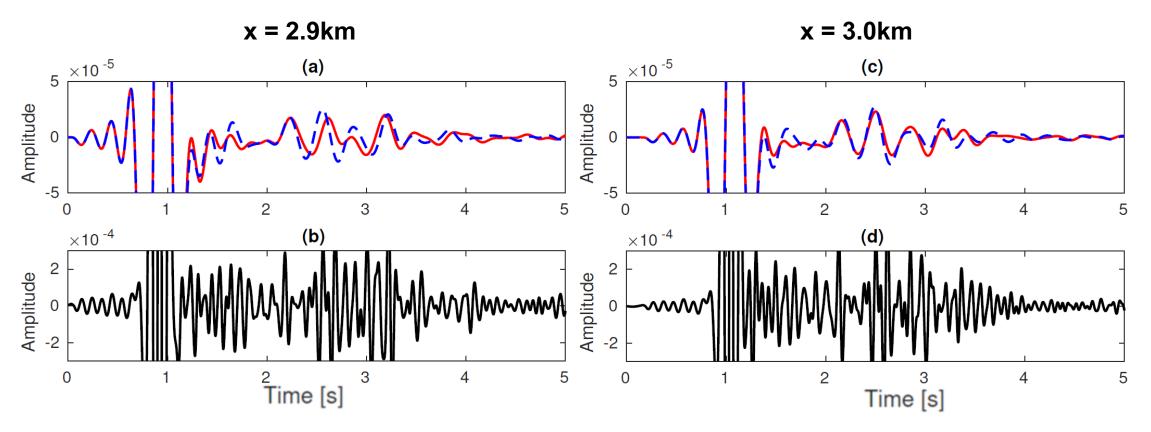
Test model: unknown low frequencies



Test error on Marmousi2



Test error on Marmousi2

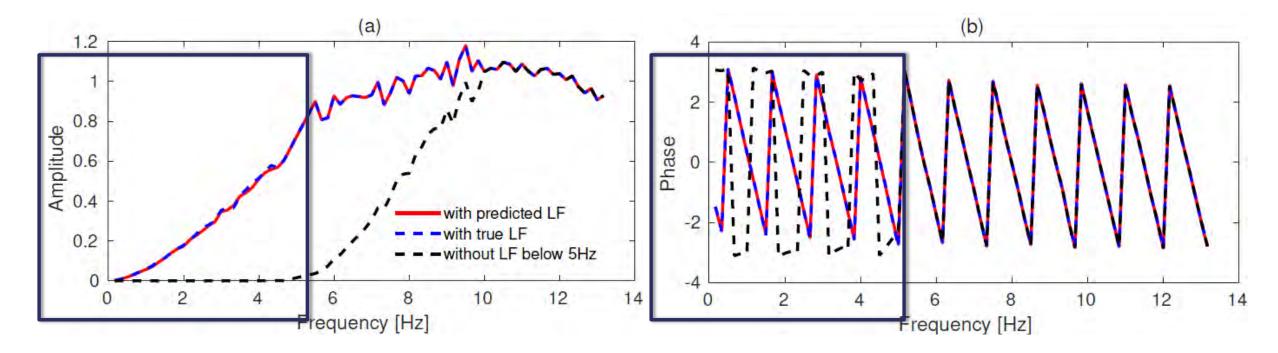


input of CNN, recording **bandlimited** in **5-35Hz**

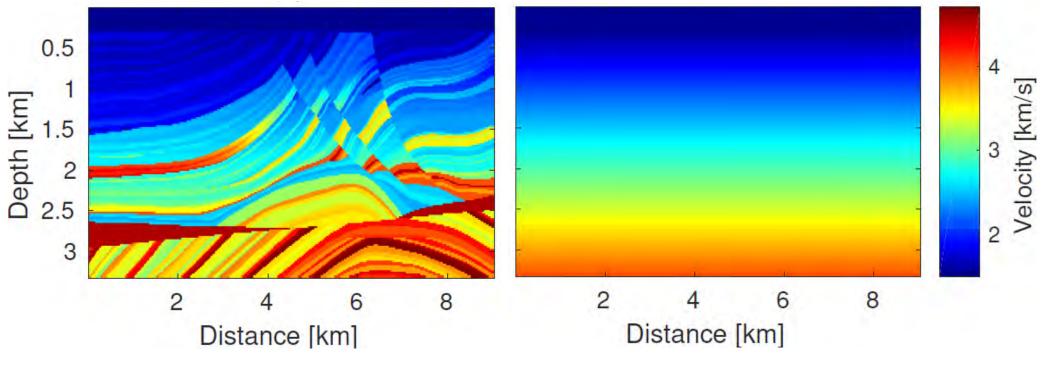
- output of CNN, predicted low frequency recording in 0.1-5Hz
- ----- true low frequency recording in 0.1-5Hz

Test error on Marmousi2

Comparison of the amplitude and phase spectrum at the horizontal distance x = 2.9km



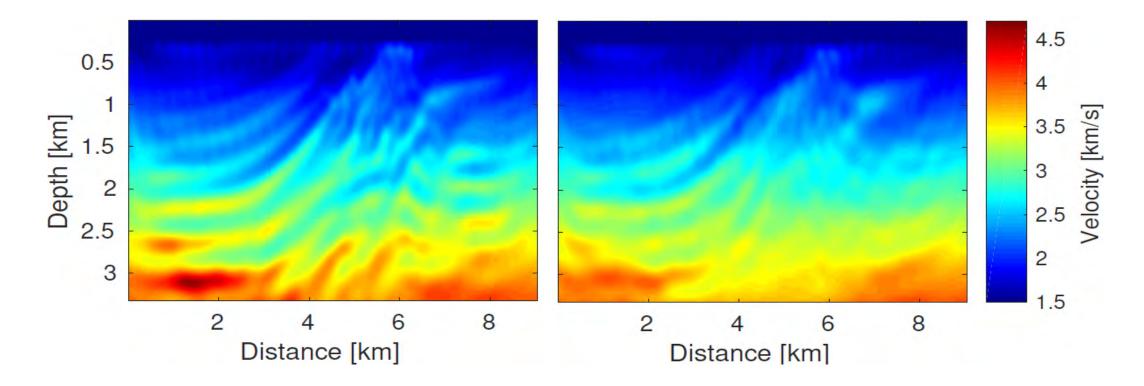
□ Marmousi2 P-wave velocity model

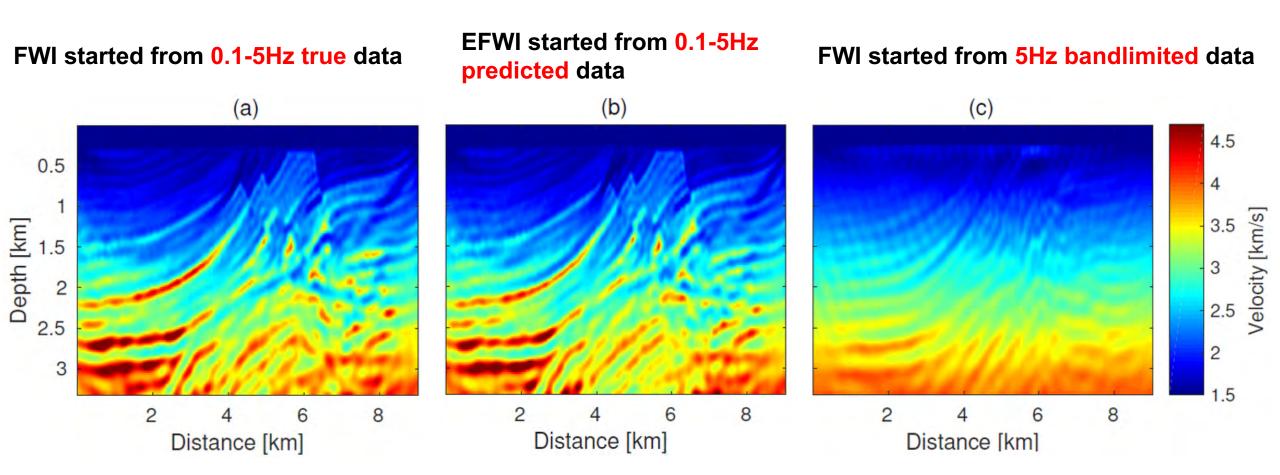


- maximum offset: 1km
- acoustic modeling

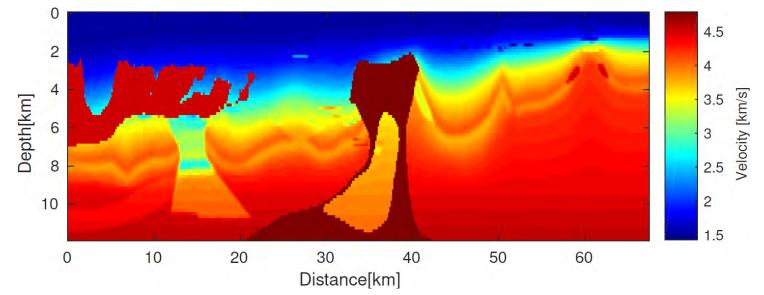
- optimizer: L-BFGS
- surface acquisition with 30 sources

FWI using true 0.1-5Hz data EFWI using predicted 0.1-5Hz data



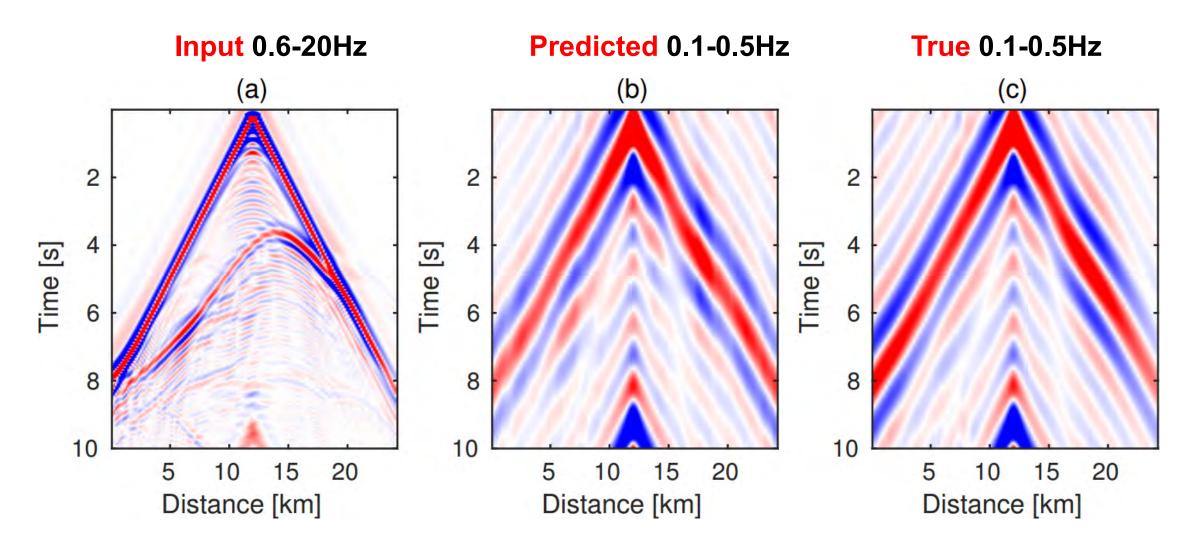


BP 2004 Benchmark model

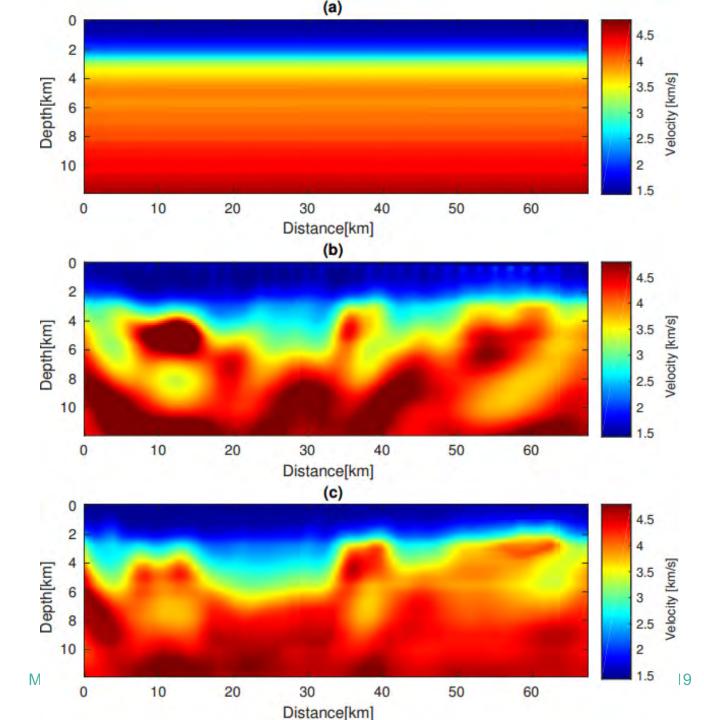


- optimizer: L-BFGS
- maximum offset: 12km
- surface acquisition with 30 sources (10Hz Ricker wavelet)
- predict 0.1-0.5Hz low frequency data using 0.6-20Hz bandlimited data
- training data are collected from submodels of Marmousi2

Extrapolated low frequency data



Earth Resources Laboratory



initial model

EFWI using 0.3Hz predicted data

FWI using 0.3Hz true data

17

Plif

Earth Resources Laboratory

FWI started from 0.6Hz bandlimited data

Velocity [km/s]

4.5

4

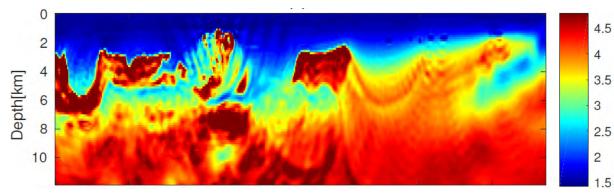
3.5

3

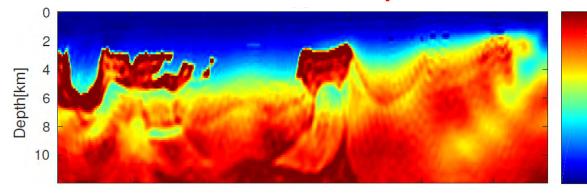
2.5

2 1.5 Velocity [km/s]

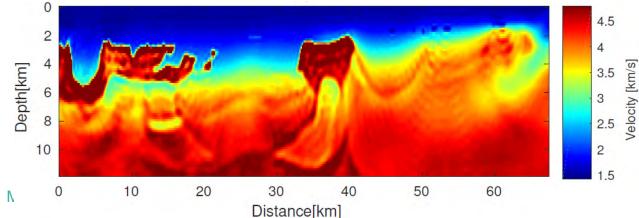
2019

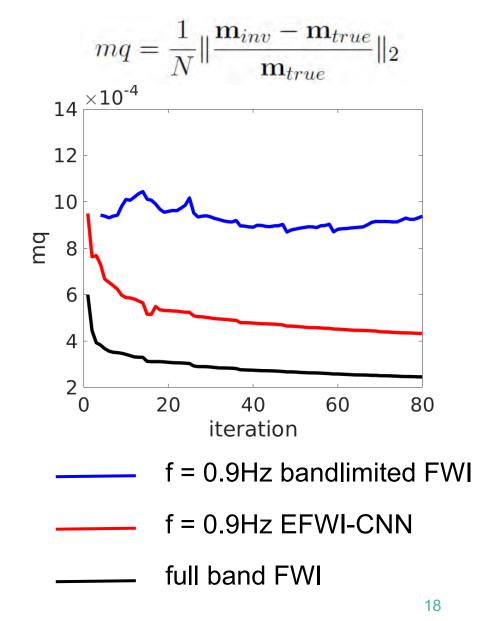


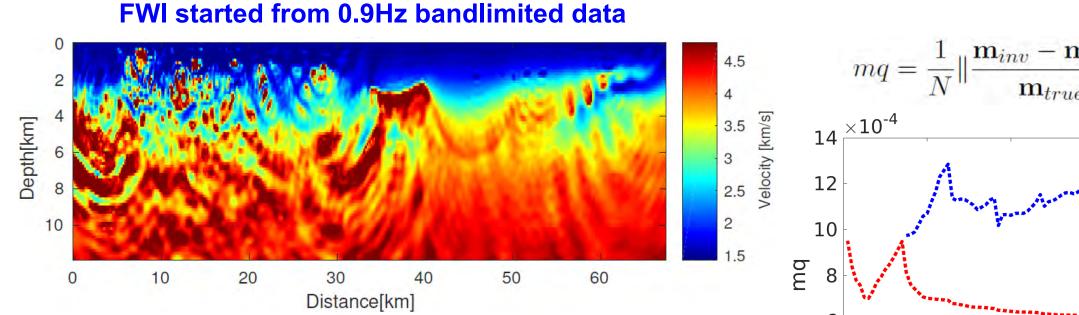
EFWI started from 0.3Hz predicted data



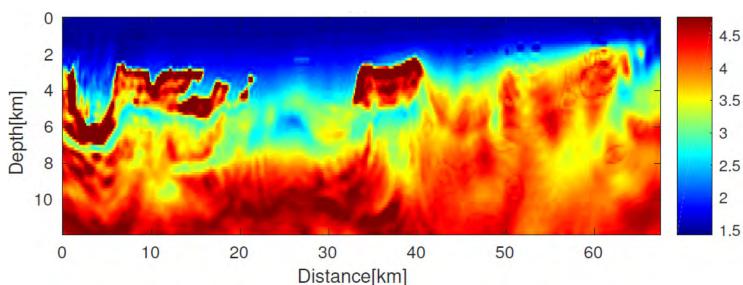
FWI started from 0.3Hz true data

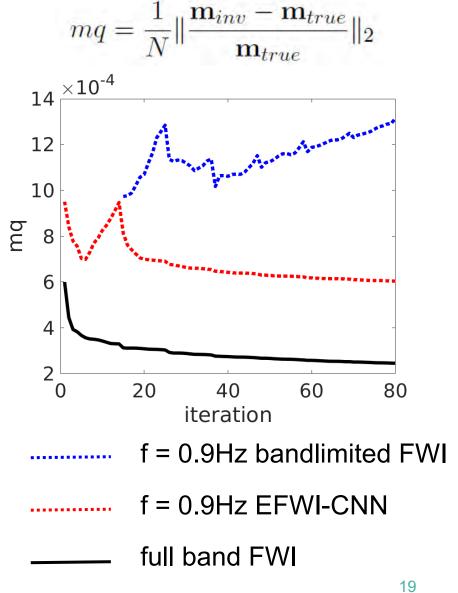






EFWI started from 0.3Hz and 0.6Hz predicted data



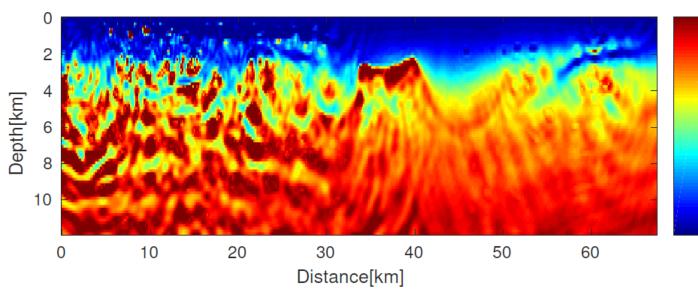


Velocity [km/s]

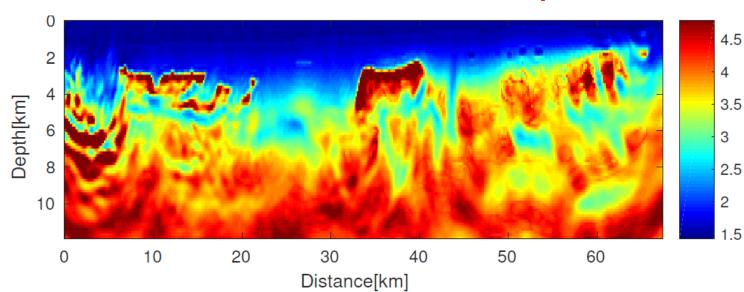
Earth Resources Laboratory

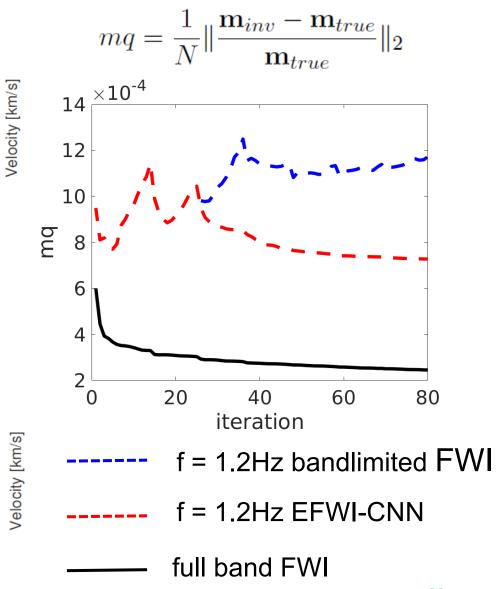
Phi

FWI started from 1.2Hz bandlimited data



EFWI started from 0.3Hz, 0.6Hz and 0.9Hz predicted data





4.5

4

3.5

3

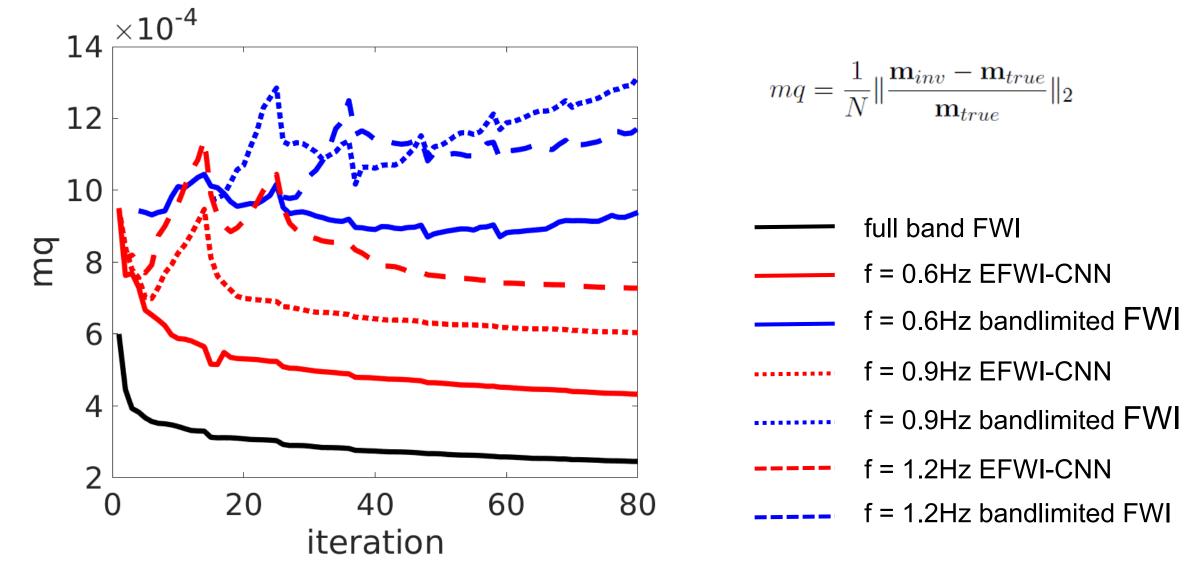
2.5

2

1.5

20

Quality of EFWI-CNN



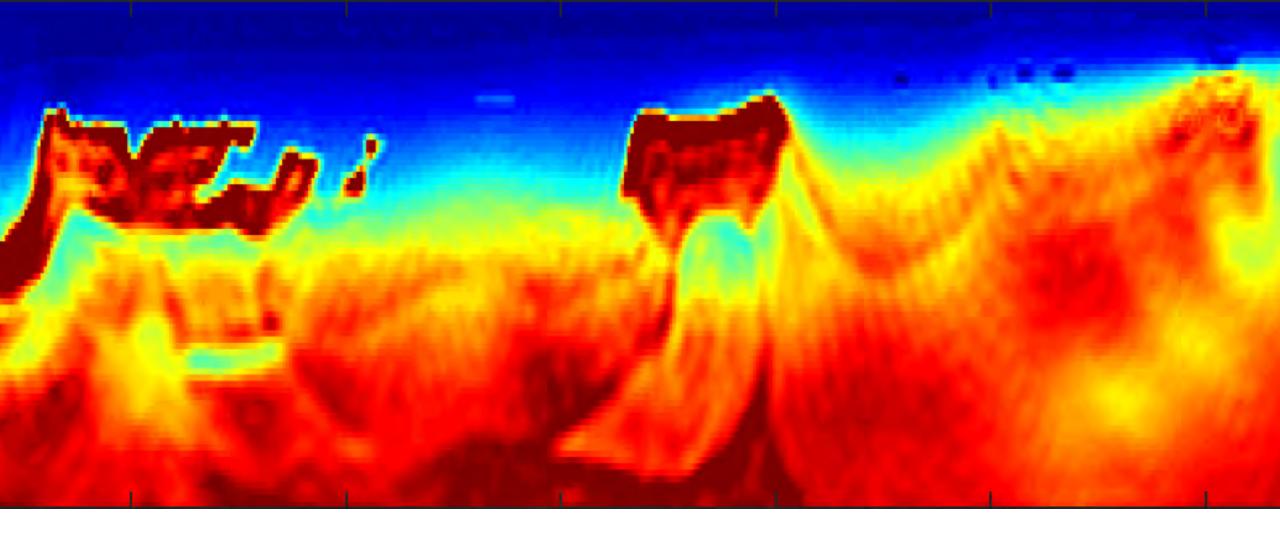
Conclusions

- □ CNNs have the ability to recover the low frequencies of unknown subsurface structure that are completely missing at the training stage.
- □ The extrapolated low frequency data can be reliable to seed FWI and mitigate cycle-skipping.
- □ The choice of the architectural parameters of the deep learning model is non-unique.
- the absence of a physical interpretation for the operations performed by the network

Acknowledgements

Thanks to MIT ERL and Total S A for support.

Thanks for your attention.

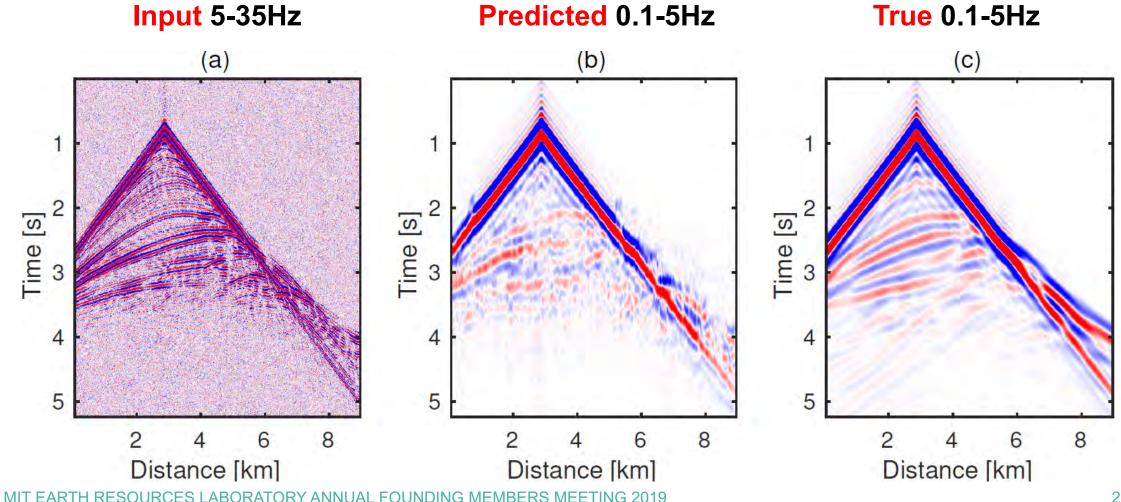


Extrapolated Full Waveform Inversion with Deep Learning

Hongyu Sun and Laurent Demanet

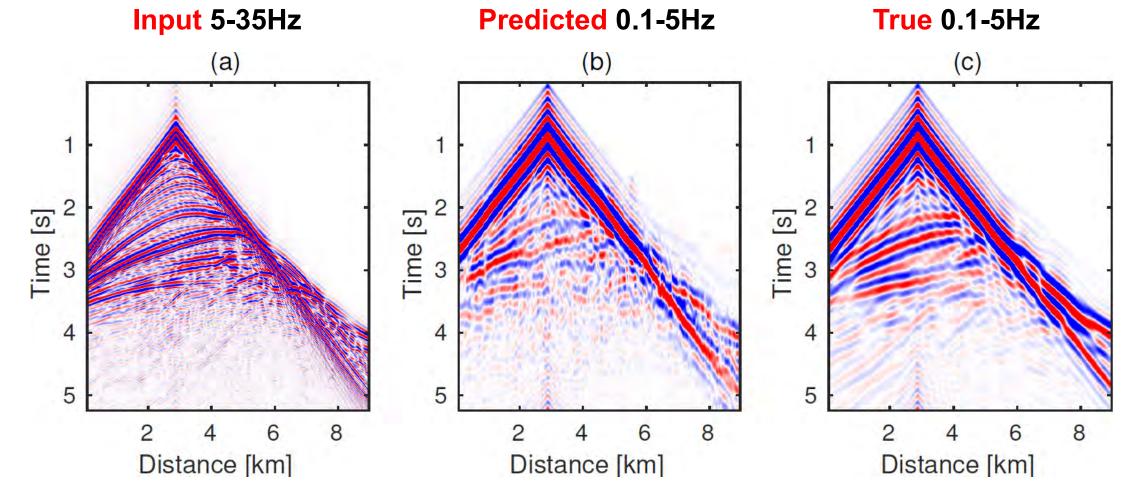
Uncertainty Analysis

C Robustness with noise



Uncertainty Analysis

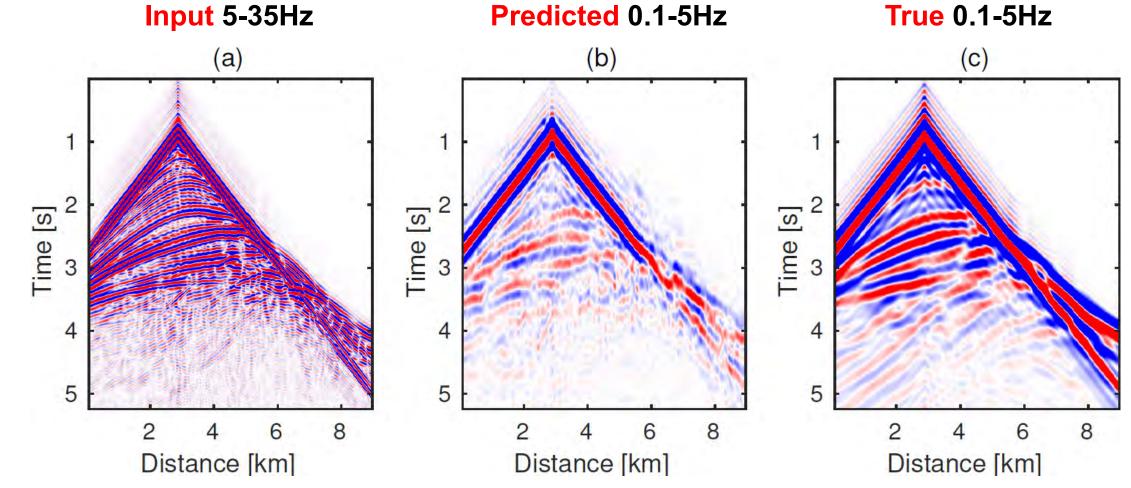
Different forward modeling solver



MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2019

Uncertainty Analysis

□ Unknown source wavelet



MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2019