MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Forecasting shale gas production using a hierarchical Bayesian model

Justin B. Montgomery PHD CANDIDATE [COMPUTATIONAL SCIENCE AND ENGINEERING]

In collaboration with Francis O'Sullivan and John Williams

Shale gas has become an extremely important resource and continues to alter the energy landscape – Accurately forecasting future levels of production is critical for government and industry

Illustration of gas production growth from the main U.S. shale plays since 2005 Bcf of gas per day

Traditional approaches to forecasting production for conventional reservoirs are not appropriate for shale gas

- Too many unknowns for reservoir simulations
 - Limited geological data
 - Complex and poorly understood behavior (e.g. fracture propagation and nanoscale flow)
- Arps' decline curve forecasting has been widely applied to shale wells but is unreliable
 - Not physically reasonable for horizontal shale gas wells

Radial flow geometry suitable for Arps' decline

An empirical "scaling curve" with physical basis was introduced by Patzek et al. (2013)

Assumptions:

- Planar fractures with infinite conductivity
- Single phase (gas)
- Darcy flow from zone between fractures

Correspondence of over 3000 wells in Barnett shale to **scaling curve**

Source: Patzek, T.W., Male, F., & Marder, M. (2013). Gas production in the Barnett Shale obeys a simple scaling theory. *PNAS*, 110 (49), 19731-19736.

Patzek's scaling curve is unreliable for early life forecasts due to uncertainty about parameters

- Gas in place (\mathcal{M}) Fracture length
- Interference time (τ) Effective (enhanced) permeability
- From curve fitting
- Ambiguity between relative rate of depletion and total producible amount

To improve reliability of forecasts we propose using a Bayesian regression framework for Patzek's scaling curve

In many shale plays, there is now abundant historical production data from existing wells \rightarrow We want to incorporate this into a prior for the scaling curve parameters in a new (early-life) well

To improve the reliability of early-life forecasts we develop a prior approximating the distribution of posterior mean parameters for all training set wells (entire production history)

$$\mu_{\mathcal{M}} = \frac{1}{N} \sum_{i}^{N} \log(\mathcal{M}_{i}) \quad \text{(likewise for } \tau)$$

$$\mathbb{P}(\mathcal{M}, \tau) = \text{Lognormal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\boldsymbol{\Sigma} = \operatorname{cov}(\log(\boldsymbol{\mathcal{M}}), \log(\boldsymbol{\tau}))$$

By incorporating offset well information into the prior, we can reduce the uncertainty of early life production forecasts

9

Our Bayesian implementation of Patzek's scaling curve substantially improves the accuracy of early life forecasts – We expect further improvements as we extend hierarchy to include correlations to geology, completion design, and spatial patterns

Other research: Machine learning model that predicts the impact of design choices on resulting well productivity/economics across a resource play

 \rightarrow <u>Shalestats.com</u> is an interactive web application to explore the "break-even oil price" for different well designs, economic parameters, and locations (currently for Williston Basin)

- 1. Adjust model parameters (or use default settings)
- 2. Click to choose a location in the Bakken (shaded map area)
- 3. Click 'Run the model' button and wait to view simulation results

Please send questions and feedback to Justin Montgomery: jbm@mit.edu

1. Adjust model parameters:

Cost of capital

Royalty/Taxes

Model input variables

Map data @2017.Google Terms of Use Report a map error

This tool is helping us to understand the dynamics behind resource development costs – Drilling activity in the Bakken has been concentrated on the lowest cost (sweet-spot) areas

Median breakeven price with 2018 tech. (\$/Bbl)

Backup slides

Production forecasting with conventional vertical wells has historically been carried out using Arps' decline curve – derivable for radial transient flow

- Originally introduced as empirical model by Arps, 1944
- Fetkovich (1980) provided physical basis for model
- Led to well testing (inverse problem) for reservoir properties based on fit to analytical models

$$q = q_i (1 + bD_i t)^{\left(-\frac{1}{b}\right)}$$

Source: Fekete.com

More on derivation of Patzek's model

Example well: Dixon Unit B-1H (XTO Energy)

When forecasts are made earlier on, the posterior distribution widens and the posterior predictive mean forecast becomes less reliable

Incorporating this prior into the model helps restrict the parameter space of the posterior according to past observations and improves the forecast

18

Bayesian approach improves accuracy of early life (12 mo.) production forecasts for test set

squares

least

Nonlinear

์ 19

Adaptive Metropolis algorithm (Haario et al., 2001)

Acceptance probability:

$$\alpha(X_{t-1}, Y) = \min\left(1, \frac{\pi(Y)}{\pi(X_{t-1})}\right)$$

Proposal is Gaussian centered at X_{t-1} with covariance:

$$C_t = \begin{cases} C_0, & t \leq t_0, \\ s_d \operatorname{cov}(X_0, \ldots, X_{t-1}) + s_d \varepsilon I_d, & t > t_0. \end{cases}$$

Empirical covariance calculated for $t = t_0 + 1$:

$$\operatorname{cov}(x_0, \ldots, x_k) = \frac{1}{k} \left(\sum_{i=0}^k x_i x_i^{\mathrm{T}} - (k+1) \bar{x}_k \bar{x}_k^{\mathrm{T}} \right)$$

Recursive formula used thereafter to reduce computation:

$$C_{t+1} = \frac{t-1}{t}C_t + \frac{s_d}{t}(t\overline{X}_{t-1}\overline{X}_{t-1}^{\mathrm{T}} - (t+1)\overline{X}_t\overline{X}_t^{\mathrm{T}} + X_tX_t^{\mathrm{T}} + \varepsilon I_d).$$

MCMC for well

