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Shale gas has become an extremely important resource and continues to alter the energy
landscape — Accurately forecasting future levels of production is critical for government and industry
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Traditional approaches to forecasting production for conventional reservoirs are not
appropriate for shale gas

- Too many unknowns for reservoir simulations
- Limited geological data
- Complex and poorly understood behavior (e.g. fracture propagation and nanoscale flow)

- Arps’ decline curve forecasting has been widely applied to shale wells but is unreliable
- Not physically reasonable for horizontal shale gas wells
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An empirical “scaling curve” with physical basis was introduced by Patzek et al. (2013)

Assumptions:
- Planar fractures with infinite conductivity
- Single phase (gas) Correspondence of over 3000 wells in Barnett
- Darcy flow from zone between fractures shale to scaling curve
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Source: Patzek, T.W., Male, F., & Marder, M. (2013). Gas production in the
Barnett Shale obeys a simple scaling theory. PNAS, 110 (49), 19731-19736.



Patzek’s scaling curve is unreliable for early life forecasts due to uncertainty about parameters

From derivation

- Gas in place (M) — Fracture length

- Interference time (7) — Effective
(enhanced) permeability

From curve fitting

- Ambiguity between relative rate of
depletion and total producible
amount
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To improve reliability of forecasts we propose using a Bayesian regression framework for

Patzek’s scaling curve

In many shale plays, there is now abundant historical production data from existing wells

- We want to incorporate this into a prior for the scaling curve parameters in a new (early-life) well
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To carry out Bayesian regression we use Markov chain Monte Carlo (MCMC) to draw samples

that approximate the posterior distribution

Bayes rule:

Gaussian noise
for likelihood:

MCMC algorithm
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To improve the reliability of early-life forecasts we develop a prior approximating the
distribution of posterior mean parameters for all training set wells (entire production history)

N
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Y = cov(log(M), log(t))
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By incorporating offset well information into the prior, we can reduce the uncertainty of early
life production forecasts
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Our Bayesian implementation of Patzek’s scaling curve substantially improves the accuracy

of early life forecasts — We expect further improvements as we extend hierarchy to include
correlations to geology, completion design, and spatial patterns
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Other research: Machine learning model that predicts the impact of design choices on resulting
well productivity/economics across a resource play

- Shalestats.com is an interactive web application to explore the “break-even oil price” for
different well designs, economic parameters, and locations (currently for Williston Basin)

How to use:

1. Adjust model parameters (or use
default settings)

2. Click to choose a location in the
Bakken (shaded map area)

3. Click 'Run the model’ button and
wait to view simulation results

Please send questions and feedback to
Justin Montgomery: jbom@mit.edu
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This tool is helping us to understand the dynamics behind resource development costs —
Drilling activity in the Bakken has been concentrated on the lowest cost (sweet-spot) areas
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Production forecasting with conventional vertical wells has historically been carried out using
Arps’ decline curve — derivable for radial transient flow

- Originally introduced as empirical model by Arps, 1944

- Fetkovich (1980) provided physical basis for model TRANSIENT RADIAL FLOW

- Led to well testing (inverse problem) for reservoir
properties based on fit to analytical models
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More on derivation of Patzek’s model
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Example well: Dixon Unit B-1H (XTO Energy)
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When forecasts are made earlier on, the posterior distribution widens and the posterior
predictive mean forecast becomes less reliable
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Incorporating this prior into the model helps restrict the parameter space of the posterior

according to past observations and
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Nonlinear least squares
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Adaptive Metropolis algorithm (Haario et al., 2001)

. . 7(Y)
Acceptance probability: a(X:i1, Y) = mm(l, _)
’ (X 1)
Proposal is Gaussian
centered at X,_; with C, = Co, IS lo,
covariance: sqcov(Xo, ..., Xi1) +sqely, > 1.
Empirical covariance 1 (<& T T
calculated for t = t, + 1: COV(Xp, ..., Xk) = A (Z xix; — (k + 1)xx;
i=0

Recursive formula used t—1 Y . . .
thereafter to reduce Cooy=—0C+—(X, X, —(t+ DX X, + XX, +ely)

t t t—1 t t
computation:

Source: Haario, H. Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 7(2), 223-242. 20



MCMC for well
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