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Shale gas has become an extremely important resource and continues to alter the energy 
landscape – Accurately forecasting future levels of production is critical for government and industry

Illustration of gas production growth from the main U.S. shale plays since 2005
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Today, new shale plays supports 
~70% of US dry gas production The 

Marcellus 
Shale 
alone now 
produces 
over 7 Tcf
per year of 
gas. 

More than 
Canada, 
Iran or 
Qatar 

Source: F. O’Sullivan, United States Energy Information Administration, HPDI Production Database
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Traditional approaches to forecasting production for conventional reservoirs are not 
appropriate for shale gas

Source: Arps, J. J. (1945). Analysis of decline curves. Transactions of the AIME, 160 (01), 228-247.

Radial flow geometry suitable for Arps’ decline A contemporary 
unconventional well

- Too many unknowns for reservoir simulations
- Limited geological data
- Complex and poorly understood behavior (e.g. fracture propagation and nanoscale flow)

- Arps’ decline curve forecasting has been widely applied to shale wells but is unreliable
- Not physically reasonable for horizontal shale gas wells
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An empirical “scaling curve” with physical basis was introduced by Patzek et al. (2013)

Assumptions:
- Planar fractures with infinite conductivity
- Single phase (gas)
- Darcy flow from zone between fractures

Source: Patzek, T.W., Male, F., & Marder, M. (2013). Gas production in the 
Barnett Shale obeys a simple scaling theory. PNAS, 110 (49), 19731-19736.

Gas in place

Interference time

Correspondence of over 3000 wells in Barnett 
shale to scaling curve
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Patzek’s scaling curve is unreliable for early life forecasts due to uncertainty about parameters

From derivation
- Gas in place (ℳ) – Fracture length
- Interference time (𝜏) – Effective 

(enhanced) permeability

From curve fitting
- Ambiguity between relative rate of 

depletion and total producible 
amount

12 
months

Actual 
production

Example well:
Dixon Unit B-1H
(XTO Energy)

Possible forecasts after 12 
months productionActual production
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Example well:
Dixon Unit B-1H
(XTO Energy)

To improve reliability of forecasts we propose using a Bayesian regression framework for 
Patzek’s scaling curve
In many shale plays, there is now abundant historical production data from existing wells
à We want to incorporate this into a prior for the scaling curve parameters in a new (early-life) well
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To carry out Bayesian regression we use Markov chain Monte Carlo (MCMC) to draw samples 
that approximate the posterior distribution

Bayes rule:

Gaussian noise 
for likelihood:

ℙ " ℳ, % ∝'((*+;ℳ-./ 0 %1 , 234)!
6

+78

Dixon Unit B-1H (XTO Energy)

MCMC algorithm
1. Initialize chain 

(randomly)
2. Propose new state 

with Gaussian ‘step’ 
(Metropolis)

3. Accept new state 
with probability

min	(1,
Π+,-+
Π./,,

)

4. After 5000 steps, 
use covariance of 
accepted samples

ℙ ℳ, $ % = ℙ % ℳ, $' ℙ(ℳ, $)
ℙ(%)

Actual 
production

Scaling curve 
forecast 
(posterior 
mean)

ℙ ℳ, $ % ∝ ℙ % ℳ, $' ℙ(ℳ, $)

Can include useful 
information in prior
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To improve the reliability of early-life forecasts we develop a prior approximating the 
distribution of posterior mean parameters for all training set wells (entire production history)

log	(ℳ4)

log	(𝜏4)

log	(ℳ)

log	(𝜏)

5

Histogram of mean parameters 
for training set of wells 

Lognormal distribution to use as prior

!ℳ = $ 1&'log$(ℳ,)
.

,
$$$$$(likewise$for$6)

! = cov(log()), log,(-))
ℙ(ℳ, $) = Lognormal(0, 1)
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Posterior 
predictive 
mean

By incorporating offset well information into the prior, we can reduce the uncertainty of early 
life production forecasts

Dixon Unit B-1H 
(XTO Energy)

80% 
credible 
interval

Reduced uncertainty 
using informative prior 
instead of uniform prior
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Our Bayesian implementation of Patzek’s scaling curve substantially improves the accuracy 
of early life forecasts – We expect further improvements as we extend hierarchy to include 
correlations to geology, completion design, and spatial patterns
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Other research: Machine learning model that predicts the impact of design choices on resulting 
well productivity/economics across a resource play

à Shalestats.com is an interactive web application to explore the “break-even oil price” for 
different well designs, economic parameters, and locations (currently for Williston Basin)



12

This tool is helping us to understand the dynamics behind resource development costs –
Drilling activity in the Bakken has been concentrated on the lowest cost (sweet-spot) areas

Source: MIT Analysis
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Backup slides
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Production forecasting with conventional vertical wells has historically been carried out using 
Arps’ decline curve – derivable for radial transient flow

Source: Fekete.comSource: Arps, 1945, Analysis of decline curves

- Originally introduced as empirical model by Arps, 1944

- Fetkovich (1980) provided physical basis for model

- Led to well testing (inverse problem) for reservoir 
properties based on fit to analytical models
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More on derivation of Patzek’s model

Hydraulic diffusivity:

Interference time:

Dimensionless time:

Gas in place:

Numerically solve PDE:
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Example well: Dixon Unit B-1H (XTO Energy)



When forecasts are made earlier on, the posterior distribution widens and the posterior 
predictive mean forecast becomes less reliable

Forecast 
based on 

entire 
production 

history

Forecast 
based on 
first 12 
months 

Forecast 
based on 
first 24 
months 

17

log	(𝜏)

log	(ℳ)

log	(𝜏)

log	(ℳ)log	(ℳ)

log	(𝜏)

Actual 
production

Training 
cutoff

Scaling curve 
forecast
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Incorporating this prior into the model helps restrict the parameter space of the posterior 
according to past observations and improves the forecast

log	(ℳ)

log	(𝜏)

log	(ℳ)

log	(𝜏)

Forecast based on 
first 12 months 

Forecast based on 
first 24 months 
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Bayesian approach improves accuracy of early life (12 mo.) production forecasts for test set

H
ie

ra
rc

hi
ca

l 
ap

pr
oa

ch

N
on

lin
ea

r l
ea

st
 s

qu
ar

es
 

(P
at

ze
k

et
 a

l.,
 2

01
3)

Accuracy of predicted 
cumulative production 
(at final time in data)

Fit of scaling curve to 
actual production

0 0.5 1 1.5 2
Predicted final month cumulative production (BCF)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ac
tu

al
 fi

na
l m

on
th

 c
um

ul
at

iv
e 

pr
od

uc
tio

n 
(B

C
F)



20

Adaptive Metropolis algorithm (Haario et al., 2001)

Acceptance probability:

Proposal is Gaussian 
centered at 𝑋789 with 
covariance: 

Empirical covariance 
calculated for 𝑡 = 𝑡< + 1:

Recursive formula used 
thereafter to reduce 
computation:

Source: Haario, H. Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 7(2), 223-242.
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MCMC for well


