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Example: ambient seismic noise

Credit: EarthScope, usarray.org
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Noise, ballistic waves, and coda

Credit: Nikolai Shapiro, Michel Campillo
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What information is present in ambient seismic noise?

Wave equation with random forcing(
1

c2(x)
(a + ∂t)

2 −∆

)
u(x , t) = n(x , t)

Space-time white noise: Gaussian with
〈n(x , t)n(y , s)〉 = δ(t − s)δ(x − y).

Pointwise: u(x , t) has Gaussian statistics in t

Pairwise: u(x , t) and u(y , s) may be strongly correlated
⇒ may contain info about c(x)
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Cross-correlations

Cross-correlations are robust to source randomness.
Their peaks indicate traveltimes.

Time reversal (phys): Fink et al. 1993.

Time reversal (math) Bal,
Papanicolaou, Ryzhik, 2002; Bal,
Ryzhik 2003

CINT imaging: Borcea, Papanicolaou,
Tsogka, 2003, 2005

Seismic interf. (phys): Weaver et al.
2001; Campillo, Paul 2003; Snieder,
2004; Wapenaar et al. 2006

Seismic interf. (math): Bardos et al.
2008; Colin de Verdiere 2009; Garnier,
Papanicolaou, Solna 2009+

Wapenaar et al. 2010
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Sample mathematical result (Bardos et al. 2008)

Assume a space-time white noise source. Let

CT (τ, x , y) =
1

T

∫ T

0
u(x , t)u(y , t + τ) dt.

Then

∂τ 〈CT (τ, x , y)〉 = −e−a|τ |

4a
sgn(τ)G (|τ |, x , y)

where (
1

c2(x)
∂2
t −∆

)
G (t, x , y) = δ(t)δ(x − y).

(Extensions: ergodicity, or large T limit, in the high freq regime.)
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Seismic interferometry

In turn,

G (t, x , y) is singular near t = traveltime(x , y)

traveltime(x , y) is related to c(x)

Hence: determine c(x) by traveltime tomography

Credit: EarthScope, usarray.org
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Open questions

Are c.c always the right idea?

What if the source distribution is
not isotropic?

Can we avoid traveltime
tomography to get c(x)?

Is there physics that the lag of a
cross-correlation peak doesn’t
see?

What to do with
combinations of 3 or more
sensors?

Deep nets provide “cheap” answers to most such questions
(no guarantees, no physics)
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Experimental setups

1 Traveltime inversion with anisotropic sources, homogeneous
media

2 Identification of source distributions

3 Inhomogeneous wavespeed inversion

Training: For homogeneous media, generate new data on the fly,
seen once and never again. For inhomogeneous media, direct solve
with conventional SGD + data augmentation
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Traveltime inversion

Isotropic Directional (sin2 θ) Directional (wedges)
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Traveltime inversion: 2 sensors suffice

Estimated vs true traveltime (test samples)

Locally connected

(also works with CLSTM)

Distribution of relative errors
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Inversion of source directionality

Estimated vs true source strength of the form a sin θ + b cos θ
(test samples). Need CLSTM architecture.
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More Source Directionality

Left: network trained in a wedge distribution (with three sensors).
Right: same as previous slide.
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Inversion of heterogeneous wavespeeds

c(x) = ax1 + bx2 + c

Estimated vs true traveltime

Relational network
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What are the nodes actually computing? (1)

Noiseless:

Noisy:
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What are the nodes actually computing? (2)

Regress quadratic monomial on hidden nodes.
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Architectures: Locally connected
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Architectures: CLSTM
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Architectures: Relational
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Automatic De-parameterization

PDEξNuisance

pRelevant Parameter

u(ξ, p)

NN

prediction

training

ξ: random source
p: local wave speed, source distribution, etc
u(ξ, p): passive seismic data

Goal: create representations of the data u(ξ, p) that are mostly
invariant to ξ and have enough information to recover p. In limited

situations, this is what cross-correlations does.
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Conclusions

Blessing:
Data-centric predictions without a forward or inverse physical
model (automatic de-parametrization of forward simulations that involve

nuisance parameters that cannot be estimated during the inversion)

Curse:
Physical content is (at best) buried in the network

Curse:
Lack of performance guarantees
(possible overfitting, testing out of sample)

Outlook: characterization of scatterers, better performance in the
inhomogeneous case
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