MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Deep Learning: an efficient tool for making sense of massive seismological datasets

Manuel A. Florez PHD STUDENT [EARTH, ATMOSPHERIC AND PLANETARY SCIENCES]

In collaboration with German Prieto and Laurent Demanet

Subduction zones

WHAT CONTROLS THE STRUCTURE OF INTERMEDIATE-DEPTH SEISMICITY IN SUBDUCTION ZONES?

• Tectonic Environment

- Composition?
- Water content?
- Temperature?
- Intermediate Depth Earthquakes
 - Mechanism is not well constrained
- Machine Learning
 - Can Machine Learning help us?
 - We need a global perspective!
 - *ML* algorithms are only as good as the data we feed into them ...

EQ Locations to Constrain Mechanism

A Big Data Problem!

OVERWHELMED WITH DATA: CONTINUOUS RECORDINGS AT THOUSANDS OF SENSORS WORLDWIDE.
 PETABYTES OF TIME-SERIES DATA.

• HOW CAN WE QUICKLY EXTRACT USEFUL INSIGHTS FROM THEM??

4

l'liī"

Machine Learning

CONVOLUTIONAL NEURAL NETWORKS

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

16 convolutional layers. 1 fully connected layer

CLASSIFICATION PROBLEM

Three classes:

- P and S wave in at least 3 station
- P wave in at least 5 stations
- Other.

Precision: 96.2 %

Detection

NETWORK ARCHITECTURE

CNN training: Template matching

WIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2010

Data Augmentation

- Mute 1 arrival.
- Mute 2 arrivals.
- Randomly stretch the amplitude of 1 or 2 arrivals.
- Apply a small Random offset to randomly selected arrivals.
- Apply scaling factor to randomly selected arrivals.
- Can increase labeled data by a factor of a 100.

Picking

NETWORK ARCHITECTURE

- 8 convolutional layers.
- 2 fully connected layers.

Magnitude Estimation

NETWORK ARCHITECTURE

CATALOG LOCATIONS SHOW NO DOUBLE-SEISMIC ZONE (DSZ)

DEPTH CROSS-SECTION

How it Helps

DSZ

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Frequency-magnitude statistics

MIT EARTH RESOURCES LABOR

Conclusions

WHAT CONTROLS THE STRUCTURE OF INTERMEDIATE-DEPTH SEISMICITY IN SUBDUCTION ZONES?

Intermediate Depth Earthquakes

- Significant differences between upper and lower planeMechanism is not well constrained
- Machine Learning
 - In many applications CNNs can replace template matching.
 - Data Augmentation the key problem.
 - Potential to get results in hours, rather than months

