Modeling nucleation and propagation of shear rupture on rough faults with a large range in wavelengths

Yuval Tal

PhD student EAPS

In collaboration with Brad Hager MIT Earth Resources Laboratory 2016 Annual Founding Members Meeting May 19, 2016

Fault roughness- self-affine fractals

Spectral density

 $P(k) = Ck^{-(2H+1)}$

H - Hurst exponent

$$C = 1x10^{-6} - 2x10^{-4}$$

Study numerically the effect of roughness on the nucleation and

propagation of shear rupture

Friction laws

Massachusetts

Institute of

Technology

Rate and state friction (Dieterich, 1979)- μ (V $_{rel}, \theta$)

$$\mu = \mu^* + aln\left(\frac{v_{\rm rel}}{v^*}\right) + bln\left(\frac{v^*\theta}{d_c}\right)$$

 V_{rel} - slip velocity, V*- reference velocity μ *- steady-state friction at V = V* a and b- material dependent empirical constants d_c - critical slip distance, θ - state variable:

Aging law

$$\dot{\theta} = 1 - rac{\theta v_{
m rel}}{d_c}$$

Conceptual approach

Slide 4 2016 Annual Founding Members Meeting

Massachusetts Institute of Technology

Numerical challenges and approach

- Larger fault with fixed minimum wavelength => larger range in wavelengths
- 1. Computationally expensive
 - => Hanging nodes
- 2. The assumption of small slip relative to the size of the elements may not be valid
 - => Mortar Finite Element Method

Continuity in an integral sense

Implementing slip weakening and rate and state friction laws

Massachusetts Institute of Technology

Mortar Finite Element

1. Finite element discretization

Virtual work:
$$\delta \Pi(\mathbf{u}, \delta \mathbf{u}) = \delta \Pi_{\text{int,ext}}(\mathbf{u}, \delta \mathbf{u}) + \delta \Pi_{\text{c}}(\mathbf{u}, \delta \mathbf{u})$$

Total Lagrangian formulation Lagrange multipliers (λ)
(Bathe, 1996) $\delta \Pi_{\text{c}} = \int_{\gamma_{c}^{(1)}} \lambda \cdot (\delta \mathbf{u}^{(1)} - \delta \mathbf{u}^{(2)}) d\gamma$

Massachusetts

Institute of

Technology

- 2. Contacts are updated each time step
- 3. Contact constraints

r

r

Normal direction: non-penetration condition

$$\int_{\gamma_c^{(1)}} \delta \lambda_n g_n d\gamma \ge 0, \qquad \lambda_n \ge 0, \qquad \lambda_n g_n = 0$$

Tangential direction: Coulomb's law

$$\int_{\gamma_c^{(1)}} \delta \lambda_t (v_{t,rel} - \beta \lambda_t) d\gamma = 0,$$

 $\psi \coloneqq |\lambda_t| - \mu |\lambda_n| \le 0, \qquad \beta \ge 0, \qquad \psi \beta = 0$

 g_n - gap function, $v_{t,rel}$ - relative velocity,

 μ – friction coefficient

Massachusetts

Institute of

Technology

- 4. Variable time step
- Quasi-static stages: backward Euler
- Dynamic stages: implicit Newmark
- 5. A primal-dual active set strategy
- Dividing slave nodes into non-active, stick, and slip node sets
- Replacing the inequality contact constraints by complementarity functions (Hueber and Wohlmuth, 2005)
- Consistent linearization to give iterative semi-smooth Newton scheme
- Static condensation of the Lagrange multipliers (Wohlmuth, 2000)

Quasi-static benchmark for rate and state

Example: Finite fault in a continuous domain

Smooth fault

Rough fault: $b_r = 0.001$

The effect of roughness amplitude

 By implementing friction laws into the Mortar Finite Element method, we model the nucleation and propagation of shear rupture along rough faults with a large range in wavelengths.

 We numerically observe and quantify the significant effect of roughness on the following quantities: (1) Seismic moment; (2) Stress drop; (3) Slip rate; and (4) Nucleation and propagation properties such as nucleation length, rupture velocity, and breakdown zone.

Massachusetts Institute of Technology

Thank You!