MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Deep learning applied to induced seismicity – Earthquake detection, location and forecasting

Chen Gu POSTDOCTORAL ASSOCIATE [EARTH, ATMOSPHERIC AND PLANETARY SCIENCES]

In collaboration with M. Nafi Toksöz, Youssef M. Marzouk, Saied Mighani, and J. Brian Evans

Overview

Induced Seismicity Increases: Observations and Complexities

Seismic Data Interpretation and Prediction: Uncertainty and Efficiency Challenge

 Deep Learning Applications: Detection, Location and Forecasting

Induced Seismicity in the World

http://www.nofrackingway.us/2013/12/25/frackquakes-seismic-guidelines-for-frackland-buildings/

Induced Seismicity in Groningen

- 68 boreholes
- 1478 located events since 1986

Induced Seismicity in Groningen

Overview of Classical Seismic Inversion

Bayesian Machine Output

Gu et al, *GJI*, 2018

Curse of Dimensionality

https://haifengl.wordpress.com/2016/02/29/t here-is-no-big-data-in-machine-learning/

Deep Learning Possibilities

Deep Learning Detection and Location

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Perol et al., Sci. Adv., 2018

Deep Learning Detection and Location

Deep Learning Detection and Location

<u></u>	Autocorrelation	FAST	ConvNetQuake (ours)
Noise detection accuracy	100 %	$\approx 100~\%$	99.9 %
Event detection accuracy	100 %	87.5 %	100 %
Event location accuracy	N/A	N/A	74.6 %
Runtime	9 days 13 hours	48 min	$1 \min 1 \sec$

What we can improve:1. Location resolution.2. Use multi-station data.

Perol et al., Sci. Adv., 2018

Upgraded 3-D Location in Groningen

Gu et al., SEG expanded abstract, 2018 MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Beyond Classification

Earthquake Prediction

Rouet-Leduc et al., 2017

Earthquake Forecasting

This Experiment is conducted by Saied Mighani at the rock physics lab.

- The traditional geophysical algorithm becomes costly and impractical with the huge increase of data, both in oil/gas fields and laboratories.
- The big volume of labeled micro-seismic and pico-seismic (laboratory) data makes it possible to apply deep learning to earthquake detection, location and forecasting problems more efficiently and smartly.

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Thank you!

- The traditional geophysical algorithm becomes costly and impractical with the huge increase of data, both in oil/gas fields and laboratories.
- The big volume of labeled micro-seismic and pico-seismic (laboratory) data makes it possible to apply deep learning to earthquake detection, location and prediction problems more efficiently and smartly.