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Motivation
Towards Multiscale Fault (zone) Modeling

@ Realistic fault
networks consist of
intersections and %,
off-fault structures;

fault zone

@ intersecting faults
are dealt with
“cross-link”
constraint method;

or
@ off-fault structures

are conceptualized
as Eshelby’s
inclusions.



Intersecting faults

Cross-link constraint method
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Intersecting faults

Example results, modified SCEC 14
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Intersecting faults

Modified SCEC 15
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Intersecting faults
(Equivalent) Eshelby’s inclusion problems

@ Displacement and
stress around a

inclusion subject to v
unconstraln.ed inelastic @) #
transformation are
given by Eshelby’s A & g
solution; -
T o
E f.*ga

@ elastic perturbations
around an ellipsoidal
inhomogeneity excited
by uniform loading can
be resolved as an
equivalent inclusion
problem.




Static Eshelby’s Solution
Interactive inhomogeneities

@ For single inclusion,
U(X) = gt (Vi€ — 2veimme — 4(1 = V)ejo )

O'ij( ) _ {C,-,-k/(Sk/mne;n — 62,), interior,
Ciikt Drimn(X) €5n, exterior.
where S and D are interior and exterior Eshelby’s tensors
respectively; and e* is effective eigenstrain, where
(C— ACS)e* = ACe™.
@ For ninclusions, Meng [2019b, to be submitted]
approximates the eigenstrain e* of i-th inclusion as
(C— AC'S))e ~ AC! (e + 37, Die)
which is solved directly after rearranging the unknowns.



Static Eshelby’s Solution

Eshelby’s solution in truncated space by Esh3D

Comparison between
Esh3D and purely numerical
method:

@ Esh3D only needs to
make grid for host
matrix, and considers
inclusions analytically.

@ Purely numerical model
has both inclusions and
hots matrix discretized.
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Static Eshelby’s Solution

The Esh3D code,

@ for truncated domain, numerically impose traction
(Neumann) and displacement (Dirichlet) boundary
conditions [Meng, 2019a];

@ for whole space, does not require numerical grid;

@ is considerably inexpensive compared to the purely
numerical model.
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Static Eshelby’s Solution

Esh3D (hybrid) vs analytic vs numeric
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Fault Zone Dynamics

Conceptual fault zone inclusions

(a) parallel (b) perpendicular

@ Define a fault zone; SCEC 205 — O O

. [ —
@ place ellipsoidal with fault zone

inclusions, with different
elastic moduli, in the
fault zone;

@ the shape, orientation
and properties of the
inclusions
conceptualize off-fault
heterogeneous
structures.




Fault Zone Dynamics

Modified SCEC 205 problem result

Off-fault fracture effects are .
sensitive to rupture modes: . F i
@ Fault-parallel fractures o
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Fault Zone Dynamics

strike [km]

@ Horizontally (mode-Il), “para” and “ref” stay closely, while
“perp” falls behind;

@ vertically (mode-Ill), “ref” and “perp” stay closely, while
“para” leads;

@ localized mode-lIl rupture makes “para” advance quicker.



Fault Zone Dynamics

Frequency domain

@ first two rows are sampled on the horizontal (mode-Il) line;
@ third row is sampled on the vertical (mode-IIl) line.
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Conclusion and future work
Conclusion

We developed a novel method to efficiently model complex fault
(zone) across aseismic and seismic cycles, where
@ Intersecting faults are dealt with cross-link constraint
method;
@ off-fault inhomogeneity is dealt with Eshely’s inclusion
method.
Static Eshelby’s inclusion source can be coupled with Okada’s
fault source (Esh3D) for joint geodetic data inversion.
Source code:
@ https://github.com/Chunfang/Esh3D
@ https://github.com/Chunfang/defmod-swpc
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