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I Motivation

Joint theory of friction and
fracturing:

Friction along the fault + crack tip
processes.

Induced earthquakes:

Mineralization of parts of the fault,
slip propagation includes breaking
of locked sections - fracturing.

Rupture velocity for different
mechanisms:

Slow slip events vs. seismic
events.



| Problem and solution i | =i

Problem: stress drop for fracturing vs. friction

Absence of joint theory of fracturing and friction that would be able to describe both brittle cracking
and frictional sliding along the fault.
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Solution:

* Finite element numerical simulations

» Observing slip-weakening instability propagation

» Observing rupture propagation, described by fracture energy criterion

« Observing similarities and differences in stress, slip, friction coefficient, slip rate etc., trying to

link fracture and friction theories ;



] Fracturing modes
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Figure 1. Crack modes: (a) — mode [; (b) — mode II;

(c) — mode Il
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Mode Il is preferred if (Melin 1985):
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Figure 2. Preferred crack modes (Melin 1985)
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| Mode | vs. Mode Il fracture

» Preexisting horizontal flaw (no cohesion, static friction)
« Abaqus XFEM (eXtented Finite Elements Method)
 Maximum principal stress propagation criterion vs. material weaker in shear

Figure 3. Mode | crack Figure 4. Mode |l crack
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| Slip-weakening friction

The slip-weakening friction law was first proposed by Ida
(1972) and Andrews (1976):
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where u, and u,; — static and dynamic friction coefficients, D

— slip magnitude, o — normal stress, D. — critical slip distance,
and 7. — cohesive stress.

In our simulations fault healing is enforced between cycles.
Figure 5. Shear stress for slip
weakening friction

Figure 6. Slip and slip rate as a function

of time for slip weakening friction



] Earthquake cycle model

2D, plane strain
Linear elastic material

Boundary conditions: lithostatic
compression and shear

3 fault sections: middle section —
static friction u = 0.6; sides —
slip-weakening u; = 0.6, u, = 0.7

Time scale: years for quasi-static
part, seconds for dynamic part

Figure 7. Model geometry




I Quasi-static cycle - friction

« 3 sections: middle — creeping u = 0.6, sides —
slip-weakening u,; = 0.6, ug, = 0.7

Figure 8. Shear stress on the fault Figure 9. Slip on the fault
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] Dynamic cycle - friction
 Initial conditions — output of the last step of quasi-static simulation

Figure 10. Shear stress in the domain



] Dynamic cycle - fracture

Brittle crack propagation occurs along predefined surfaces. Power law
model (Wu 1965):
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Where G;, G;;, and G;;; strain energy release rates for different
fracturing modes and G,., G;;c, and Gy are critical energy release
rates necessary for the fracture to propagate.

For plane strain:

Similarly for G;, and Gy;.

Figure 11. Strain energy release rate fracture propagation criterion
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] Dynamic cycle - fracture

 Initial conditions — output of the last step of quasi-static simulation

Figure 12. Shear stress in the domain
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] Friction vs. fracture

« Slip distribution for dynamic rupture propagation

Figure 13. Slip on the fault - Slip-weakening friction

Uqg = 0.6, u, = 0.7

Figure 14. Slip on the fault — strain energy release
fracture criterion
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] Friction vs. fracture

» Shear stress distribution for dynamic rupture propagation

Figure 15. Traction on the fault - Slip-weakening

friction uz = 0.6, u, = 0.7

Figure 16. Traction on the fault — strain energy
release fracture criterion

13



] Friction vs. fracture

« Slip rate on the fault for dynamic rupture propagation

Figure 17. Slip rate on the fault - Slip-weakening

friction uz; = 0.6, u, = 0.7

Figure 18. Slip rate on the fault — strain energy
release fracture criterion
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] Conclusions

Current state:

Successful modeling of out-of-plane mode | and mode Il shear cracks with Abaqus XFEM
Quasi-static models of earthquake cycle (slip-weakening instability) with fault healing between the cycles

Dynamic part of the cycle modeled with Abaqus fracture propagation capability and Pylith slip-weakening
subroutine

Qualitative comparison of fault parameters for the two approaches: similar stress and slip distribution,
different time scale and slip rate (potentially seismic vs. aseismic slip)

Work in progress:

» Analytical expressions to link fracturing and frictional parameters

Implement cohesive strength with slip-weakening friction in Pylith
Rate-and-state friction in a similar context
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Questions?

]
Ekaterina Bolotskaya - bolee@mit.edu
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] Back-up slides
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] Model description

Figure 4. Abaqus model and BC Figure 5. PyLith model and BC

Method: FEM (Abaqus
and PyLith)

2D, plane strain
Size: meters

Boundary conditions:
lithostatic compression +
shear

Material: linear elastic

Fault rheology: static
friction with cohesion, slip-
weakening friction
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| Plastic simulations

» Orientation and size of plastic zones depend on material dilation angle

Figure 6. PyLith stress and plastic strain Figure 7. Abaqus stress and plastic strain

20



| Rate-and-state friction

Empirical frictional constitutive law (Dieterich 1979,
Ruina 1983):

S (V)+Bl(Wﬂ)
T=r1, nVo n D)’

where B = bo and A = aoc rate-and-state parameters,
6 — state variable, D, is the critical slip distance, and
T, and V,, are reference stress and slip rate values.

Dieterich ageing (or slowness) law:
=122
— D"

State variable evolves even when slip rate is 0.

Figure 3. Rate-and-state model and experiments
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| Stability modelling
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Figure 12. Periodic cycles
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| Steady state and stiffness

Steady state line with:

Phase trajectories

—— Phase trajectories
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| Comparison of the two evolution laws
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Figure 13. Phase diagram (top) and parameters vs. time Figure 14. Phase diagram (top) and parameters vs. time

for ageing law (bottom) for slip law (bottom)




] O mapping for Ruina
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| PyLith rate-and-state implementation

To avoid significant variations in the coefficient of friction for slip rates on the same order as the residual tolerance we

regularize the rate-and-state friction model by imposing a linearization of the variation of the coefficient of friction
with slip rate when the slip rate drops below a cutoff slip rate:

First two terms of Taylor series:
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] PyLith rate-and-state

Figure 15. Slip rate, slip, state variable, traction along the fault

Parameters:

D.,=10">m , a=0.008, b=
0.010, 0 ~27 MPa, t~ 18 MPa
and reference friction coefficient
to = 0.6

Observations:

Slip rate up to 100 m/s, time to
instability ~ 0.5 year

Issues:
Time-resolution
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| Comparison with Dieterich 1992
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Figure 16. Time dependence for instability Figure 17. Slip and slip rate (Dieterich 1992)
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| Mode Il stress intensity
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| Crack tip plasticity

Plastic zone length (Irwin 1957):
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