MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Experimental Study of Flow in Fractured Media

Rafael Villamor Lora, Hao Kang GRADUATE STUDENTS [CIVIL AND ENVIRONMENTAL ENGINEERING]

Supervised by Prof. Herbert Einstein, in collaboration with Wei Li

Introduction

Lee et al. (2015)

Key Points

- Fracture flow is affected by a series of coupled processes → Experimental results may be difficult to interpret
- Better understanding through experiments in which:
 - Processes can be separated
 - Processes can be observed directly (e.g. visually)
- Will lead to more accurate models, and validation of existing ones.

<u>Outline</u>

- Laboratory Equipment
- Fracture Replica [Acrylic/Silicone]
- Real Rock [Limestone]
- Conclusions

Laboratory Equipment

Investigation using Idealized Fracture Models

Fracture Replica and Technique

Visual Visual

Investigation using Idealized Fracture Models

Applications

- Equipment/Technique Development
- Validation of Flow Models
- Investigations of Coupled Processes

Investigation using Idealized Fracture Models

Experimental results: Linear & Non-linear Flows

Investigation using Idealized Fracture Models

Experimental Results: Linear & Non-linear Flows

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBE

<u>At "low" confining pressure</u>: the pressure gradient is linear with flow rate even for "large" flux rates.

<u>At "high" confining pressure</u>: the gradient is non-linear with flow rate, especially at "large" flux rates. Also, the large pressure gradient results in fracture dilation.

Non-linearity may be caused by a combination of turbulent flow and fracture dilation

Increasing CP \rightarrow Nonlinearity ∇P vs. Q \rightarrow Turbulence & Fracture dilation

Musandam Limestone Specimens

Motivation

- The hydro-mechanical properties of Musandam limestone have not been well characterized
 - Evolution of fracture aperture over time √
 - Evolution of fracture aperture over cyclic loading
 - Effect of minerology and solubility
- Important both regarding civil infrastructure and hydrocarbon reservoirs

Methodology

FACTORS ON HYDRAULIC APERTURE CHANGING WITH TIME

- In each test, fix the confining pressure and flowrate. Measure the hydraulic aperture changing with time.
- From test to test, vary the confining pressure or flowrate or surface geometry. Study the effect of the above mentioned factors

APERTURE CALCULATION

- The surface profiles before and after the flow test were scanned.
- The aperture distribution fields are calculated based on three-point contact assumption.

Methodology

Specimen	Fracture type	Confining pressure (kPa)	Flowrate (μL/S)
001	Tensile 300		10
003	Tensile	500	2.5
004	Tensile	300	2.5
007	Saw-cut (polished)	300	2.5

Schematic – Effect of Different Factors

Effect of surface roughness

Effect of flowrate

Example: effect of surface roughness on hydraulic aperture change

Comparison:

- Tensile fracture (specimen 004)
- Polished saw-cut fracture (specimen 007)

Summary:

- Initial hydraulic aperture: tensile
 > polished saw-cut
- Hydraulic aperture reduction rate: tensile > polished saw-cut

Example: effect of surface roughness on mechanical aperture change (tensile)

Tensile fracture: before testing

	Averaged mechanical aperture (µm)		
Before test	330.39		
After test	228.20 (reduced by 30.90%)		

Tensile fracture: after testing

• Significant decrease in averaged mechanical aperture.

Example: effect of surface roughness on mechanical aperture change (polished saw-cut)

Polished saw-cut fracture: before testing

	Averaged mechanical aperture (µm)		
Before test	29.81		
After test	24.52 (reduced by 17.75%)		

Polished saw-cut fracture: after testing

- Compared with tensile fracture, the aperture reduction for polished saw-cut fracture is smaller.
- Compared with tensile fracture, the initial averaged aperture is also smaller, and the contact area is larger.

Ongoing Research

- External stresses may produce important changes in the fracture geometry leading to nonlinear flow.
- Experiments with fracture replica help to separate different processes (e.g. effect of mechanical closure)
- When the time duration is less than 60 hours, under flow condition, the hydraulic aperture decreases with time. Higher confining stress, higher flowrate or rougher surface will lead to larger hydraulic aperture reduction.
- Compared with polished saw-cut fracture, the averaged mechanical aperture of tensile fracture is larger. During flow tests, the mechanical aperture reduction of tensile fracture is larger.

Acknowledgement

• Thanks for the support of ADNOC and MIT ERL!

Back-up slides

Result Discussion

	Factors affecting hydraulic aperture reduction rate						
	Fracture surface roughness		Confining pressure		Flowrate		
Relative magnitude	Rougher	Smoother	Smaller	Larger	Smaller	Larger	
Hydraulic aperture reduction rate	Larger	Smaller	Smaller	Larger	Smaller	Larger	

