Global Characterization of Double Seismic Zones Manuel Florez

Graduate Student, Department of Earth, Atmospheric and Planetary Sciences In collaboration with German Prieto

MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting June 1, 2017

Massachusetts Institute of Technology

Earth Resources Laboratory

What is the structure of intermediate depth seismicity in

Subduction Zone Structure

Maximum depth of seismicity Geometrical Structure of Seismicity

Intermediate Depth Earthquakes

Mechanism is not well constrained

Earthquake Locations

Accurate EQ relocation is *key* to understanding subduction zone process

MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting

subduction zones?

Global Distribution of Seismicity

Depth Phases

- Sensitive to and better for constraining hypocenter depth.
- However, it is challenging to routinely identify them.

MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting

Slide 4

Array Processing Techniques

Ambient Noise (Gerstoft et al., 2012) Backprojection (Ishii et al., 2005). Deep Interface Imaging (Rost and Thomas, 2013)

MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting

aboratory

Vespagram Analysis

Subarrays in Western USA

MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting

Institute of

Technology

Relocation

Earth

Resources

_aboratorv

Massachusetts

Institute of

Technology

pP-P times at the same Subarray

MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting

Resources Laboratory

Institute of

Technology

DSZ: Central America

MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting

Massachusetts Institute of Technology

DSZ: Tonga

MIT Earth Resources Laboratory 2017 Annual Founding Members Meeting Massachusetts Institute of Technology

Resources

Laboratory

DSZ: Global

Possible Model

Resources

Laboratory

Institute of

Technology

Conclusion

- Double Seismic Zones appear to be a defining characteristic of subduction zones.
- Seismicity clusters into two planes in every subduction segment studied.
- Until this study it was not possible to clearly define DSZs due to the large errors present in global EQ catalogs.
- The separation between the planes of seismicity correlates with age of the plate.

