Chemo-thermo-geomechanical implications for monitoring CCS (and geothermal) reservoirs

Bradford H. Hager

Cecil and Ida Green Professor of Earth Sciences

Department of Earth, Atmospheric and Planetary Sciences

Associate Director, ERL

May 26, 2022

We Need Abatement, CCS, & Negative Emissions Technologies (NETS) at Scale!

GHG emissions (GtCO₂e/year)

10 Gt/y ~ 80 Gbbl/y storage of sCO₂

Global oil production: 34 Gbbl/y Global wastewater injection: 100 Gbbl/yr

FIGURE 8.1 Scenario of the role of negative emissions technologies in reaching net zero emissions (UNEP, 2017).

NOTES: Green represents mitigation, brown represents anthropogenic greenhouse gas emissions, and blue represents anthropogenic negative emissions. Negative emissions of 10 Gt CO_2 are required by the late 2050s and of 20 Gt CO_2 by the late 2090s because of ongoing positive emissions ties such as agriculture (mostly N₂O and CH₄) and activities that are very expensive to

ERL contributions to solution of climate crisis

- Decrease the rate of emissions
 - Geothermal
 - Electricity, low grade heat, . . .
 - Store energy and H₂
 - Carbon Capture and Storage (CCS)
- Remove CO₂ negative emissions technologies (NET)
 - Bioenergy with CCS (BECCS)
 - Grow biomass, burn, generate electricity, CCS, repeat. . . .
 - Direct Air Capture (DAC)
 - Direct Ocean Capture (DOC)
- Geographic distribution of secure storage *at scale* match to CO₂ capture sites
 - Saline aquifers
 - Mineralization

MIT Earth Resources Laboratory Annual Founding Members Meeting 2022

Matching storage to CO₂ supply at scale

Figure 3.8 Theoretical CO₂ storage capacity by region

Recognizing storage options is critical for planning

- Example: Is CCS/GSC feasible for India?
 - Not much storage identified on shore
 - Thick offshore deposits, but not well characterized is it suitable?
 - Exploration, assessment of storage resources
 - Substantial basalt is it permeable?

Can permanent CCS be demonstrated?

Role of Geophysics in Carbon Capture and Sequestration 5–7 December 2022 | Saudi Arabia Abstracts submission deadline: 24 August 2022

The main challenge for CO_2 Capture is centered around what is called storage permanence. A storage is said to be permanent if it can store 99% of the injected CO_2 for 100 years. Hence, the role of geophysics is to help monitor the status of the injected CO_2 in the reservoir and its capability of storing CO_2 during and after the injection, and to manage the process of the injection itself.

MIT Earth Resources Laboratory Annual Founding Members Meeting 2022

• Yet these behaviors are expected, even for secure storage

A key to conventional GCS: rapid increase in CO₂ density with depth

Density of CO₂ increases greatly at ~ 70 bar (700 m H_2O)

Behavior depends strongly on T & PLarge and variable κ and α

$$\kappa_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_T$$

$$\alpha = \frac{1}{\rho} \frac{\partial \rho}{\partial T}$$

Nonlinear response

Storage in saline aquifer: important processes

Injection of cold sCO₂ into a hot aquifer (later *T* recovery, changes in *V* and *P*)

Trapping of some CO_2 in pores & throats (changing solubility as T and P change)

Ponding of sCO_2 beneath caprock (changing κ and α as T and P change)

CO₂ dissolves in brine and sinks Plume shrinkage expected!

Szulczewski et al. PNAS 2012;109:5185-5189

- ★ CO₂ plume is mobile and buoyant
- Plume migrates due to groundwater flow and aquifer slope
- Plume spreads due to buoyancy
- Plume shrinks due to capillary trapping
- Plume shrinks due to dissolution

Brine with dissolved $CO_2 \approx 3-5 \%$ denser than before dissolved

Chemo-elasticity: ΔV & Δp changes

- Dissolution
 - Easily misinterpreted as leakage
 - Large effects on in situ κ and α
- Mineral replacement large ΔV
 - Effect on permeability?
 - Pore clogging?
 - Carbofracking?
 - Seismicity?

Dissolution reactions:	Calcite, siderite, magnesite
Basaltic rock + $xH^+ \dots \rightarrow Mg^{2+} + Ca^{2+} + Fe^{2+} + AI^{3+} + SiO_{2(aq)} \dots$	
$Mg_2SiO_4 + 4H^+ \rightarrow 2Mg^{2+} + 2H_2O + SiO_{2(aq)}$	
$Fe_2SiO_4 + 4H^+ \rightarrow 2Fe^{2+} + 2H_2O + SiO_{2(aq)}$	
Precipitation reactions:	
$(Ca, Mg, Fe)^{2+} + CO_3^{2-} \rightarrow$	(Ca,Mg,Fe)CO ₃
(calcite, siderite, magnesite)	

MIT Earth Resources Laboratory Annual Founding Members Meeting 2022

)man ophiolite, courtesy P. Kelema

Summary – looking forward

- CCS is essential to mitigate large temperature increases
 - Near term: Decrease rate of emission of CO₂ into the atmosphere
 - Long term: Remove CO₂ from the atmosphere net negative emissions
- The scale needed is daunting
 - > than current rate of wastewater injection and hydrocarbon production
- Sources of CO₂ will be distributed unevenly globally, storage sites must match
 - Much more exploration and characterization are needed
 - Shallow reservoirs may be best (high porosity and permeability, lower risk of leakage & sseismicity)
- It is not feasible to demonstrate 99 % containment
 - Successful storage sites are easily misidentified as leaking!
 - Tolerating minor leakage less damaging than stopping storage
 - Regulations should be based on detecting leaks, rather than proving containment