MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Geomechanical assessment of the induced seismicity experiment at Rangely, CO

Josimar A. da Silva Jr¹, Hannah Byrne², John Shaw², Ruben Juanes^{1,3}

- 1. DEPARTMENT OF EARTH, ATMOSPHERIC AND PLANETARY SCIENCES (EAPS), MIT
- 2. DEPARTMENT OF EARTH AND PLANETARY SCIENCES (EPS), HARVARD UNIVERSITY
- 3. DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING (CEE), MIT

Increase in seismicity in the central U.S.

1200 Central U.S. Number of M3+ Earthquakes 9 08 08 Earthquakes 1973 - 2016 855 M ≥ 3 Earthquakes 1973 - 2008 200 2897 M ≥ 3 Earthquakes 2009 - 2016 1980 1985 1990 1995 2000 2005 2010 2015 1975 Figure 1: Earthquake occurrence in the Central US. Figure from the USGS.

inducedearthquakes.org

BASE D

induced earthquakes: stresses acting on the fault at the time of failure are largely derived from human activities

triggered earthquakes: stresses on the fault are largely tectonic but the timing of the earthquakes was affected by anthropogenic activities.

Rangely injection experiment, Colorado (1970)

1. Four wells were drilled near known strike slip fault

- 2. Water was injected until earthquakes occurred
- 3. Earthquakes stopped when injection ceased

Raleigh, Science, 1976

Rangely injection experiment, Colorado (1970)

1. Pioneer work showing correlation between increase in reservoir pressure and EQ. occurrence

All figures are from Raleigh et al. (1976)

Simulation workflow

Structural model and finite element mesh

0,00 3,19e+03 4,45e+03 1,28e+03 4,44e+06 4,44e+06 4,44e+06 4,44e+06 4,45e+03 4,45e+03 4,45e+03 4,45e+03 4,45e+05 4,55e+05

- 1. Number of mesh elements ~150K
- 2. Minimum mesh element size: 300 m

Reservoir properties

Permeability

Porosity

Reservoir simulation results

Pore pressure at the strike slip fault

Rock properties and boundary conditions

 σ_3 Minimum horizontal stress

Coulomb failure function

$$CFF = |\tau| - \mu_f(-\sigma')$$
$$DCFF = CFF_{t_1} - CFF_{t_{ref}}$$
$$\mu_f = 0.6 \qquad t_{ref} = 1969.86 \qquad \sigma' = \sigma_n + P_p$$
$$DCFF > 0 \implies \text{fault destabilization}$$
$$DCFF < 0 \implies \text{fault stabilization}$$

Stress changes during injection

Stress changes during injection

Triggered vs induced seismicity

stress perturbation = $\frac{DCFF}{CFF + DCFF}$

Upper cluster: induced seismicity (due to reservoir depletion) Lower cluster: triggered seismicity

Conclusions

- Our results mechanistically confirm the conclusion that was made by Raleigh et al. (1976) that fluid injection caused the earthquakes observed in the Rangely Oil Field
- 2. In Rangely, earthquakes away from the injector wells (lower cluster) should be classified as "triggered" and not "induced"
- 3. We show that the strike slip fault is near critical instability
- 4. Our results support the hypothesis that the crust is critically stressed throughout, including in tectonically inactive regions (Zoback, 1992)

Earth Resources Laboratory

40

35

e pressure (MPa)

20 e Pore

- 15

10

1976

