Fluid Effects during Hydraulic Fracture

Saied Mighani Abdelhamid Boulenouar Brian Evans

MIT Earth Resources Laboratory 2016 Annual Founding Members Meeting May 18, 2016

Massachusetts
Institute of
Technology

Problem 1:

 How does the breakdown pressure depend on fluid rate and its properties?

Problem 2:

How does the hydraulic fracture interact with another fracture?

Hydraulic fracture with different fluids

H20

Argon

Fracture analysis

Surface profile

Fracture permeability

Problem 1: Fluid effects

Triaxial hydraulic fracturing stress conditions

Rock and fluid properties

Rock properties: Solnhofen limestone

Tensile strength: 10-15 Mpa UCS: ~150 MPa Porosity: 6% Permeability: 20 nD Grain size: <5 microns

Fluid properties:

Water: Viscosity: 1 cp Compressibility: 5e-10 pa-1

Argon: Viscosity: 0.02:0.03 cp Compressibility: 2e-6:3e-8 pa-1 (0:30 Mpa & 21°C)

An example of experimental results

Pressurization Rate dependence

The viscosity effect would predict this the other way!

Fracture Roughness surfaces: Gaussian filter, 0.25 mm

Fracture surface dimensions

A higher fractal slope means a smoother surface

Fracture permeability

Method: Steady-state (water)

Argon permeability > H2O permeability

This suggests that higher damage was created during Argon fracture.

This damage could be attributed to either a rougher surface or more branches.

Problem 2: Hydraulic Fracture interactions with

Mode I fracture

Mode II fracture

Mode II

HF interaction with a previous HF (Refrack)

Wright and Weijers, 2001

HF interaction with a previous HF (Refrack) Fluid: H2O

- 1- Pressurize the borehole
- 2- Seal the first hydraulic fracture
- 3- Pressurize the borehole

Pressurization Rate dependence

HF interaction with a fault-PMMA

HF interaction with a fault-PMMA

HF fracture surface in PMMA Fluid: Argon

Notice the rib lines, they have similar pattern and spacing as Argon fracture!

HF fracture surface in PMMA Fluid: Argon

Pressurization Rate dependence

Learnings

- 1- Breakdown pressure for Argon > H2O. This can not be explained based on simple fluid diffusion calculations. More physics (and of course chemistry!) is involved in this phenomenon.
- 2- The fracture created by Argon (compressible fluid) seems to be more complex with higher damage compared with H2O.
- 3- The HF interact with the previous HF and fault, both orthogonally.

Future Work

- 1- Design experiments to separate the fluid viscosity and compressibility effects.
- 2- How do fault properties affect this interaction?

