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SUMMARY

Accurate time-shift estimation between arrivals in two seismic
traces before and after a small velocity change is crucial for
estimating the location and amplitude of velocity the change.
Windowed crosscorrelation and trace stretching are two tech-
niques commonly used to estimate local time shifts in multiply
scattered coda signals. These methods both suffer when the in-
duced changes in the scattered wavefield are not simple shifts.
Cycle skipping is an example of one such obstacle that neither
method is able to overcome. A common approach to mitigate
such problems is to choose only part of the coda to analyze. In
the work presented here, we implement Dynamic Time Warp-
ing (DTW) to search for the time shift at each time sample
that globally minimizes the misfit between two seismic traces.
We show that DTW is not as susceptible to errors in time-shift
estimates caused by cycle skipping or disappearance of coda
phases due to changes in scattering. Our approach provides
a new tool to estimate small time shifts in coda and has wide
application across all disciplines of seismic monitoring with
coda waves.

INTRODUCTION

Unraveling the multiply scattered wavefield, commonly called
coda, in the Earth is a difficult task. Over decades seismol-
ogists have developed different approaches to understand and
use the coda signal, e.g. to determine earthquake magnitude
(see Chapter 3.2 in Sato et al., 2012, and references therein).
Numerous authors have demonstrated the use of coda waves to
monitor small velocity changes in different geologic settings
(see Poupinet et al., 2008, and references therein). The reason
that coda waves are often used is because they travel through
the subsurface over larger distances than the ballistic waves.
Therefore, coda waves sample the medium much more; in ef-
fect making them very sensitive to the velocity structure. The
difficulty however, comes in using coda waves to understand
the spatial distribution of the velocity heterogeneity.

Researchers across many fields have suggested ways to ana-
lyze and interpret complex coda wave signals. In seismology
the active doublet (Poupinet et al., 1984; Roberts et al., 1992)
and coda wave interferometry (CWI) (Snieder, 2006) meth-
ods are approaches to quantify small velocity changes using
coda waves. The methods are based on the assumption that a
velocity change induces measurable phase shifts in the coda.
Pacheco and Snieder (2005) developed a framework for the
spatial sensitivity of coda time shifts (At) to velocity perturba-
tions (AV) using a diffusion based kernel to represent the coda
wavefield with time:
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where the kernel (K) is a function of the source and receiver

positions x; and X, respectively. The time shifts can be es-
timated using windowed crosscorrelation or crosscoherency
(e.g. Poupinet et al., 1984; Grét et al., 2006; Haney et al., 2009)
or trace stretching (e.g. Sens-Schonfelder and Wegler, 2006;
Hadziioannou et al., 2009), and the kernels can also be derived
using radiative transfer theory (e.g. Planes et al., 2014).

If only isolated parts of the medium velocity are perturbed,
then only isolated parts of the coda should change (Pacheco
and Snieder, 2006). For example, if only a single reservoir ve-
locity changes, then only parts of the coda that contain waves
sampling this reservoir will change (e.g. Khatiwada et al., 2012).
When the velocity change AV is not homogeneous, windowed
crosscorrelation is known to under estimate Af, especially at
large lag times. This underestimation can be due to the cross-
correlation detecting the lag time that maximizes the corre-
lation within the window, which may contain waves that did
not sample the velocity change. Another cause is cycle skip-
ping due to the time shift exceeding the dominant period (e.g.
McGuire et al., 2012) or due to changes in the waveform caused
by changes in scattering.

Hale (2013) demonstrates the advantages of the Dynamic Time
Warping (DTW) method over crosscorrelation to measure vari-
ations in time-lapse seismic images. Here we compare the
DTW estimated shifts to time shifts estimated by the windowed
crosscorrelation method. DTW has been shown to out perform
crosscorrelation when time and frequency shifts are nonlinear
and strong noise is present (Hale, 2013). Recent examples of
DTW use in the seismic exploration industry can be found in
well-tie experiments (e.g. Mufioz and Hale, 2012; Herrera and
van der Baan, 2012). With this in mind, we investigate the use
of DTW to measure small delays in coda wave signals caused
by isolated velocity perturbations. Using DTW we can impose
constraints on how rapidly shifts vary with time to suppress
cycle skipping, but we need not constrain the linearity of these
shifts. This is an advantage over current methods.

THEORY

As evident by equation 1, if the Az value is not correctly esti-
mated, the corresponding velocity perturbation AV is not cor-
rectly estimated, even if an accurate kernel is available. Dy-
namic time warping (DTW) is a nonlinear optimization ap-
proach (Sakoe and Chiba, 1978) which we use to measure time
shifts between coda arrivals before and after a velocity change
has occurred in the subsurface. We implement DTW following
Hale (2013) and quantify the magnitude of time shifts in coda
waves. Below we give a short description of the method; how-
ever, we suggest the reader see Miiller (2007) or Hale (2013)
for a more complete description of the DTW algorithm and the
underlying details and assumptions.

Consider the seismogram g(;), where ¢; is the time sample in-
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dex. If we apply a time-varying shift s(¢;) to g(;) then we
obtain a second seismogram f(#;) =~ g(t; + s(#;)), which is ap-
proximately the time-shifted version of the original g(z;). Fol-
lowing Hale (2013), we define the error function

e(ti,r) = (f (1) — gt + 1)), @)

where 7; is a lag time, defined by the user. The first step in
DTW is to compute the error function for all possible times #;
and for a range of lags #;. The lags can increment at a frac-
tion of the sample interval while the maximum lag can be a
fraction of the total trace length. The next step is to search,
in both the forward and backward time directions, through this
error function, accumulating errors. The final step is to find the
minimum error (warping) path, via optimization, which should
result in a function close to the original shift s(z;). Setting the
lag increment defines the maximum time jump from one sam-
ple to the next, in essence a smoothness constraint (see Hale,
2013, Limiting strain section for complete details). This con-
straint is why DTW is less sensitive to cycle skipping.

Dynamic time warping optimizes the misfit between each sam-
ple in the two traces. Therefore, if only a few arrivals in the
coda have sampled the velocity change, the estimated time
shifts are nonlinear. In the stretching method used in many
coda wave monitoring studies (e.g. Hadziioannou et al., 2011),
s(tj) = € xt;, where € = AV /V is the stretching coefficient.

Right away, we see the linearity constraint imposed in the stretch-

ing method and note that in DTW we do not have this con-
straint.

A NUMERICAL EXPERIMENT

We investigate the use of DTW to estimate time shifts in the
coda using a 2-dimensional (2D) acoustic model with a ran-
dom Gaussian slowness distribution. We use the 2D back-
ground velocity model shown in Figure 1(a). The inner cir-
cle velocity is 6 km/s and remains constant throughout all of
the experiments. We vary the outer circle velocity from -3%
to +3% of the inner circle velocity at 1% increments (i.e., AV
=-180, -120, -60, 0, +60, +120, +180 m/s, respectively). In
Figure 1(a) we show the +1% velocity model. The model is
32 km x 32 km with absorbing boundaries. The grid spacing
is 20 m in the simulations.

We use the SeisUnix 2D finite-difference code sufdmod?2 to
model the acoustic wavefield for 10 s after the source impact.
The source is a 10 Hz (center frequency) Ricker wavelet; there-
fore, at 6 km/s the dominant wavelength is 600 m. After simu-
lation, we resample the data to an interval of 1 ms. The receiver
(gray reverse triangle in Figure 1(a)) and source (gray star in
Figure 1(b)) are co-located at the center of model. To sup-
press reflections from the inner-outer boundary we taper the
background velocity model from the inner to the outer circle.
The taper width is 2 km and starts 6 km from the center of the
model.

To create the multiply scattered coda wavefield, we generate
a random Gaussian slowness distribution and overlay this on
the various background velocity models. The random slow-
ness model is shown in Figure 1(b) as velocity. The average

size of the perturbations are on the order of 400 m. For each of
the various background velocity models we show the individ-
ual waveforms in Figure 2(a). The wiggle traces are underlain
by the grey boxes in certain places to help visualize the wave-
field changes in the different models. For instance, looking at
arrivals around 8 and 9 s, we see the appearance or disappear-
ance of coda arrivals, as well as changes in the frequency of
arrivals

TIME-SHIFT ESTIMATION

We compare the DTW method to the windowed crosscorrela-
tion method. The window length is 0.8 s — roughly 87", where
T = 0.1 s is the dominant period. For the reference trace, to
which we compare all other traces, we use the model that does
not differ across the inner and outer boundary (i.e. AV =0,
gray trace in Figure 2(a)). For each of the different traces in
Figure 2(a), we slide the crosscorrelation window 1 sample at
a time, recording the maximum correlation coefficient and the
lag at that maximum correlation. The correlation coefficients
and lag times are plotted in Figure 2(b) and 2(c), respectively.

For each model, the inner background velocity does not change.
Therefore, we do not expect any change in the waveforms until
after the time when waves could have reached the inner-outer
boundary and returned to the receiver. This time is approx-
imately 2.5 s and the correlation coefficients in Figure 2(b)
demonstrate this; the traces are identical up to ~ 2.5 s, af-
ter which the correlation coefficient begins to decrease. Note
that the models with larger velocity perturbations start to lose
correlation more rapidly than those with smaller velocity per-
turbations.

The time shifts estimated by the crosscorrelation method in
Figure 2(c) also show that At = 0 before 2.5 s and starts to
decrease or increase more-or-less linearly until the first cycle
skip occurs. The first cycle skip time is different for each
trace, but the skipping begins when At approaches 1 period,
T = 0.1 s. Therefore, the skipping begins earlier for the larger
velocity perturbation models (e.g., the blue line in Figure 2(c)
for AV = -180 m/s).

Once cycle skipping occurs, the correlation coefficients start to
decay and oscillate, and it is difficult to trust the Ar estimates
based correlation coefficients, even as they overcome the cy-
cle skipping at later times. It is worth noting that when the
crosscorrelation window is 87, the cycle skipping remains a
problem and only worsens as the window size decreases. This
is because the correlation function only identifies the local lag
time between the two windows and is sensitive to changes in
scattering (e.g. Larose et al., 2010). We can directly see this
sensitivity by considering the Ar estimates around 8 s for the
AV = 180 m/s trace. We see that the arrival just after 8 s in
the AV = 0 trace disappears in the AV = 180 m/s trace. This
causes a cycle skip in the Az estimate (Figure 2(c)).

We apply DTW to the same reference and perturbed traces to
estimate time shifts (Figure 2(d)). The maximum possible lag
is 0.5 s and the lag interval is 0.1 ms. Right away we see that
cycle skipping is no longer a problem. This is due to search-
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Figure 1: (a) Acoustic background velocity model with outer velocity equal to +1% of inner velocity; receiver indicated by the
gray reverse triangle. (b) Random Gaussian velocity perturbation model that is overlain on the background model; acoustic source

indicated by the gray star.

ing in the forward and backward directions for the set of lags
that give minimum misfit to the entire trace, not a window.
We also note that the DTW time shift estimates show more
small scale variation compared to the windowed crosscorrela-
tion. This is due to the windowed crosscorrelation averaging
time shifts within the 0.8 s window.

DISCUSSION

There is no correlation coefficient to go along with the Ar esti-
mates in Figure2(d); but as discussed above, these A estimates
globally minimize the misfit between the two traces. Studies
have been made to characterize the accuracy of estimated At
values from the various methods (e.g. Clarke et al., 2011). The
next step in our analysis will be to create a method to quantify
the accuracy of At picks from DTW.

Beyond using Ar estimates, researchers are also beginning to
use the windowed crosscorrelation coefficient itself as a com-
plementary data (Larose et al., 2010; Rossetto et al., 2011).
They use the decoherence, defined as 1.0 — CC, where CC is
the correlation coefficient, to show that imaging isolated ve-
locity perturbations using coda waves is possible. Obermann
et al. (2013a) show that the stretching At measurements com-
bined with the decoherence measurement is well suited for in-
terpreting coda in the Earth.

Interestingly, the decoherence method entails using the maxi-
mum correlation coefficient at the time lag Ar. Therefore, even
this complementary data hinges on our ability to find the right
At. Furthermore, Obermann et al. (2013b) showed with syn-
thetic examples that the early coda is dominated by surface
waves while the later coda is comprised mostly of body waves
for a source and receiver at the surface. These different waves
travel at different velocities; therefore we should not expect
a linear increase in Ar as imposed by the stretching method.

Dynamic time warping does not impose constraints on the lin-
earity of shifts, only on the slope of the At function. Therefore,
DTW has the ability to more accurately represent the time vari-
ant Ar as demonstrated in Figure 2(d).

CONCLUSION

We apply the Dynamic Time Warping (DTW) method to two
seismic traces in order to estimate time shifts in the multiply
scattered coda wavefield. These time shifts are caused by per-
turbations in the background velocity of a random Gaussian
slowness model. We compare the DTW method to the often
used windowed crosscorrelation method. The velocity model
perturbations range from -3% to +3% at a 1% interval. We
show that the DTW method is considerably more stable than
crosscorrelation, even when the correlation window length is
8 times the period. In all of the tested velocity models, the
DTW At estimate does not cycle skip when we set the lag in-
terval to one-tenth the sample interval. Furthermore, the DTW
estimate shows more fine scale structure than the crosscorre-
lation estimate. This is because the crosscorrelation averages
over the entire window. This new application has the potential
for widespread use across all disciplines using coda waves to
monitor changes in velocity over time.
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Figure 2: (a) Seismic wiggle traces; the large amplitude direct wave arrival (# < 0.25 s) is muted because it has significantly larger
amplitude than the scattered waves. Underlying grey boxes indicate notable changes in the coda waveforms, not just time shifts.
From bottom to top, the outer velocity for each trace changes by -180, -120, -60, 0, +60, +120, & +180 m/s, respectively. The middle
gray trace (AV = 0) is the reference trace to which all other traces are correlated or warped. (b) Correlation coefficients from the
sliding window crosscorrelation method; the window length is 0.8 s. (c) At estimates from sliding window crosscorrelation. (d) At
estimates from dynamic time warping. The maximum lag is set to 0.5 s and the lag interval is 0.1 ms.
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