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ABSTRACT

Time-lapse seismic data are widely used for monitoring subsurface changes. A quantitative

assessment of how reservoir properties have changed allows for better interpretation of fluid

substitution and fluid migration during processes like oil and gas production, and carbon

sequestration. Full waveform inversion has been proposed as a way to retrieve quantitative

estimates of subsurface properties through seismic waveform fitting. However, for some

monitoring systems, the offset range versus depth of interest is not large enough to provide

information about the low wavenumber component of the velocity model. In this study, we

present an image domain wavefield tomography method (IDWT) using the local warping

between baseline and monitor images as the cost function. This cost function is sensitive

to volumetric velocity anomalies, and capable of handling large velocity changes with very

limited acquisition apertures, where traditional full waveform inversion fails. In this paper,
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we first describe the theory and workflow of our method. Layered model examples are used

to investigate the performance of the algorithm, and its robustness to velocity errors and

acquisition geometry perturbations. The Marmousi model is used to simulate a realistic

situation in which IDWT successfully recovers time-lapse velocity changes.
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INTRODUCTION

Time-lapse seismic monitoring is often applied for reservoir management in the oil industry

to obtain information about reservoir changes. It helps identify bypassed oil to be targeted

for infill drilling, which extends the economic life of a field (Lumley, 2001). It is also capable

of monitoring the progress of fluid fronts, providing information for injection optimization

in enhanced oil recovery, and long-term fluid storage like carbon sequestration (Bickle et al.,

2007). Generally, one baseline survey and subsequent monitoring surveys are acquired over

time. Analysis and comparison of the datasets provides an estimate of changes in seismic

velocity and mass density. These changes are related to changes in dynamic reservoir

properties like pore pressure and fluid saturation (Dadashpour et al., 2008), which are

important in reservoir simulation and interpretation.

For a time-lapse seismic dataset, information about the changes in model parameters

in the target zone can be categorized into two groups: amplitude changes and time shifts.

Amplitude changes could be induced by new scattering in the target interval, or differences

in reflectivity at the interfaces. Time shifts are the response to a physically shifted geologic

interface (e.g. a compacting reservoir), or a velocity perturbation along the signal’s ray-path.

To better link the changes in measured signals to inferred reservoir responses, it is essential

to quantify the changes from different mechanisms. In some time-lapse seismic analysis,

the time shift information is omitted because the monitor data or images are aligned with

the baseline to compare the amplitudes. In other studies, time shifts picked at certain

horizons are used to study the reservoir velocity changes, or the strain field changes above

the reservoir (Barkved and Kristiansen, 2005; Landrø and Stammeijer, 2004). However

these analyses are conducted on post-stack data, which have already lost some information
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during the stacking process. In this study, we focus primarily on time shifts in pre-stack

data, and velocities in model space. We do not consider amplitude changes, which can be

better inverted or interpreted after the inversion for a corrected time-lapse velocity model.

To recover the seismic velocities, full waveform inversion (FWI) (Tarantola, 1984; Virieux

and Operto, 2009) has been applied to individual surveys. The application of FWI to time-

lapse data seems straight-forward, however, in practice it is constrained by the survey design,

data quality and the nonlinear nature of FWI. Inversion strategies tailored for time-lapse

data have addressed issues like repeatability, computation efficiency (Yang et al., 2012) and

local minima (Watanabe et al., 2005; Denli and Huang, 2009; Yang et al., 2011; Asnaashari

et al., 2011). Traditional FWI requires low-frequency data and large survey offsets to

invert for the low-wavenumber component of the velocity model (Virieux and Operto, 2009).

However, seismic surveys with large offsets are expensive particularly when the region of

interest is relatively small. Small-offset reflection data do not provide constraints on the

model from a wide enough range of different angles to allow for the estimation of low-

wavenumber structures. With small offsets, FWI functions more like least-square migration

which only finds reflectivity. Image-domain methods, often involving velocity analysis, have

been proposed to obtain the low-wavenumber part of the velocity model from reflection

data (Sun and Symes, 2012; Biondi and Almomin, 2012). Some image-domain methods are

computationally expensive because they require the calculation of angle gathers or offset

gathers, which require many sources and receivers. These methods are more suitable for

initial model building. Shragge et al. (2013) extended an image-domain tomography method

to 4D, however, the inverted velocity changes can be smeared.

When a seismic reflection is shifted in time, there is an ambiguity as to whether the

reflector has shifted or there is a velocity change above the reflector. However, in many
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cases, the changes in the depths of structures are not expected to be as significant as the

depth shifts of the reflectors in images due to velocity changes. For example, the physical

displacement of the reservoir boundaries caused by compaction may be only a fraction

of a sampling interval of the migration image (e.g. half a meter per year in the North

Sea (Barkved and Kristiansen, 2005)). However, volumetric strain in the overburden due

to compaction may cause changes in its seismic velocities. Velocity in the reservoir itself

might also change due to depletion or fluid substitution. In cases like CO2 sequestration,

large amounts of fluid are injected into the subsurface, without significant changes in pore

pressure. Compared to physical structure changes, velocity changes are expected to be

the dominant effect on time-lapse images from these settings (Arts et al., 2004). In this

paper, we assume that seismic reflectors do not shift over the period during which time-lapse

surveys are collected. We also assume that the waveforms reflected from interfaces in the

targeted area do not change significantly. Based on this assumption, successive acquisitions

that illuminate similar areas should produce similar images without depth shifts if correct

velocity models are used.

In this paper, we present an image-domain wavefield tomography (IDWT) method spe-

cialized for time-lapse reservoir monitoring. With a baseline velocity model, migrated im-

ages for both baseline and monitor data can be produced with a reverse time migration

algorithm. With the assumptions above, depth differences between images should be pri-

marily caused by time-lapse changes in the velocity and not by physical changes in reflector

position. Dynamic image warping (Hale, 2013) is used to measure the image shifts in a way

that is robust to cycle skipping and amplitude differences between images. By minimizing

the warping function (the shifts between baseline and monitor images), we invert for ve-

locity changes iteratively using the adjoint-state method (Plessix, 2006). The inversion is
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only sensitive to low-wavenumber velocity perturbations that control wavefield kinematics.

The inverted velocity changes are found to be localized between reflectors, which aids in-

terpretation of fluid migration like gas leakage. Yang et al. (2014) applied this method to

time-lapse datasets from a CO2 injection field. In this paper, we describe the theory and

workflow of the IDWT approach. Synthetic examples are used to demonstrate its capabil-

ity and limitations. The robustness of the method to baseline velocity errors and survey

geometry non-repeatability is also investigated.

THEORY

Iterative inversion methods like full waveform inversion, are designed to estimate model

parameters by fitting observed data with simulated data. In the time-lapse IDWT method,

the model parameters are seismic velocity changes, and the observed data are the migrated

images that are constructed from baseline and monitor seismic surveys. We estimate velocity

changes by matching monitor migrated images with baseline migrated images. The cost

function here can be written as the L-2 norm of some measure of dissimilarity between two

images. The simplest measure is the amplitude difference:

Esubtract(m) =
1

2

∑
xs

∫
x

∫
z

|I1(x, z, xs)− I0(x, z, xs)|2dxdz, (1)

where I0 is the baseline image, I1 is the monitor image, x and z are spatial coordinates,

and xs is the source index. We derive all the equations here in 2D for simplicity, but

the extension to 3D is straight-forward with one additional integral over the third spatial

dimension. This cost function has the same drawback as the traditional FWI cost function.

When reflector shifts are too large (> half wavelength, measured normal to the reflector),

cycle skipping makes the cost function insensitive to local velocity perturbations. The direct
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subtraction I1− I0 also causes problems when the images have different amplitudes. These

differences could be related to effects other than velocity perturbations. In these cases, even

if the velocity model is correct, the cost function may not be minimized.

As described by Hale (2013), a migration image I based on the incorrect velocity can be

considered a warped version of the true image Ĩ based on the correct velocity. In Equation 2,

h(x, z) and l(x, z) are warping functions that specify how much the image point at (x, z) in

Ĩ is shifted from the same image point in I in horizontal (h) and vertical (l) directions.

I(x, z) = Ĩ(x+ h(x, z), z + l(x, z)). (2)

Here we assume that the monitor image based on the baseline velocity model is a warped

version of the baseline image. For images with reflection data, both vertical and lateral

shifts can be measured (Cox and Hatchell, 2008; Hale et al., 2008). In this study, we only

measure the vertical warping l(x, z) for simplicity. The amount of vertical warping can be

calculated by solving an optimization problem. Specifically we compute

w(x, z) = arg min
l(x,z)

D(l(x, z)), (3)

where

D(l(x, z)) =

∫
x

∫
z

(I1(x, z)− I0(x, z + l(x, z)))2dxdz. (4)

We use the dynamic warping algorithm (Hale, 2013) to solve the optimization problem

above for the warping function w(x, z).

Since the warping function decreases in magnitude as I1 and I0 become well aligned, we

use the L-2 norm of w(x, z) as the cost function:

E(m) =
1

2

∑
xs

∫
x

∫
z

|w(x, z, xs,m)|2dxdz, (5)
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where m is the squared slowness used for migrating monitor data, and xs is the source

index. We invert for velocity 1√
m

by minimizing E(m) with a gradient-based method.

To calculate the gradient G, we use an adjoint-state method (Plessix, 2006). In full

waveform inversion, the gradient is calculated by cross-correlating the forward propagated

source wavefield and the back propagated residual wavefield (the adjoint wavefield). In

IDWT, the gradient can be similarly written as a correlation between wavefields:

G(x, z) = −
∑
xs

T∫
t=0

(
∂2λs(x, z, t, xs)

∂t2
us(x, z, t, xs) +

∂2λr(x, z, t, xs)

∂t2
ur(x, z, t, xs))dt, (6)

where us(x, z, t, xs) and ur(x, z, t, xs) are source and receiver fields from forward and back-

ward propagation respectively. The associated adjoint wavefields are λs(x, z, t, xs) and

λr(x, z, t, xs). The adjoint wavefields λ are obtained by solving the wave equation:

m
∂2λ(x, z, t)

∂t2
−∆λ(x, z, t) = d, (7)

where m is the squared wave slowness, and d is the adjoint source. The adjoint sources for

solving for λs(x, z, t, xs) and λr(x, z, t, xs) are respectively:

ds(x, z, t, xs) = α(x, z, xs)ur(x, z, t, xs) (8)

and

dr(x, z, t, xs) = α(x, z, xs)us(x, z, t, xs), (9)

in which

α(x, z, xs) =
w(x, z, xs)

∂I0(x,z+w(x,z,xs),xs)
∂z

(∂I0(x,z+w(x,z,xs),xs)∂z )2 − ∂2I0(x,z+w(x,z,xs),xs)
∂z2

(I1(x, z, xs)− I0(x, z + w(x, z, xs), xs))
.

(10)

The derivation is similar to the formula in differential semblance optimization (DSO)

(Plessix, 2006). The details are presented in the appendix. The wavefield mask α(x, z, xs)
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is oscillatory due to the term ∂I0(x,z+w(x,z,xs),xs)
∂x in the numerator. The denominator in

α(x, z, xs) acts as an amplitude normalizer; in practice, we add a water-level term to the

denominator to avoid dividing by zero. The warping function w(x, z, xs) tells us where α

should be non-zero, and determines the sign of the adjoint source, which determines the

sign of the velocity update. The implementation of the inversion process consists of the

following steps:

Given a baseline velocity model m0, and a baseline migration image I0,

(i) for each shot xs, migrate the monitor data with the velocity model m0 used to

produce I1(x, z, xs)

(ii) compute the vertical shifts w(x, z, xs) using dynamic warping

(iii) evaluate the cost function E(m) after the summation over shots xs, stop (if small

enough) or go to the next step

(iv) for each shot xs, compute the adjoint wavefields λs,λr, and the partial gradient

G(x, z, xs)

(v) sum G(x, z, xs) over all shots to form the gradient G(x, z)

(vi) update the velocity model with G(x, z) to get mi+1

(vii) remigrate the monitor data with the updated model mi+1, and go to step (ii)

EXAMPLES USING SYNTHETIC DATA

In this section, we will use synthetic data to show how the method works, and investigate

its performance under different scenarios. First, a simple three-layer model is used to

demonstrate IDWT’s ability to recover low-wavenumber velocity changes. The performance

9



of IDWT with respect to number of shots is tested with the same model. A model with six

layers is used to study the relation between IDWT resolution and the layer spacing. The

robustness of IDWT to errors in the baseline velocity model is tested with two cases in

which one large and one small Gaussian velocity errors are introduced. The robustness of

IDWT to source-receiver geometry discrepancies between surveys is investigated for both

correct and incorrect baseline velocity models. Finally, the Marmousi model is used to show

how IDWT performs for a complicated velocity structure.

Three-layer Model

The three-layer model has constant velocity (vp=3000m/s) but different density in each

layer (Figure 1(a)). A velocity anomaly is placed in the middle of the time-lapse model

as shown in Figure 1(b). The shape of the anomaly is Gaussian with a maximum velocity

increase of 800 m/s. We place 300 receivers (blue triangles in Figure 1(a)) at an interval of

10 meters, and 5 sources (red stars in Figure 1(a)) at an interval of 600 meters on the surface.

The source is a Ricker wavelet with a center frequency of 25 Hz. We use a finite difference

acoustic wave equation solver to generate the datasets. In this example, we assume the

constant baseline velocity is known.

Imaging and Warping

Reverse time migration (RTM) (Baysal et al., 1983; McMechan, 1983) is used to produce

all the migration images during the inversion. The baseline and initial monitor images

obtained using a single shot gather (the third shot in Figure 1(a)) are shown in Figure 1(c)

and Figure 1(d), respectively. The position of the deeper reflector in the monitor image
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(Fig 1(d)) is shifted vertically due to the velocity change in Figure 1(b). We compute w(x, z)

using the dynamic image warping algorithm (Hale, 2013) to describe how much I1 is shifted

from I0, as shown in Figure 2. The maximum vertical shift is 4 grid points (40 meters). As

in Equation 10, w(x, z) is used to calculate a spatial weighting function α(x, z, xs), to mask

the wavefields us and ur to form adjoint sources (Equations 8 and 9).

Inversion Results Comparison

Figure 3(a) shows the velocity model change recovered from IDWT with the five sources

shown in Figure 1(a). The recovered anomaly is centered at the correct location, but it

is smeared vertically due to the acquisition geometry. This vertical smearing is bounded

by the two reflectors. If the inversion attempts to put any perturbation above the first

reflector, the entire image will be shifted. IDWT will subsequently reduce this shift by

reversing that perturbation. Some of the changes are positioned along the ray-paths due

to limited source and receiver coverage. Within the area of the recovered anomaly, the

amplitude is not correctly distributed, and the maximum velocity increase is only 50% of

the true value.

Although the inverted velocity is not perfect, the monitor migrated image based on it

(Fig 3(b)) shows reflectors at the same locations as in the baseline image (Fig 1(c)). The

model from IDWT has the correct background kinematics, and is a good starting model for

FWI. Figure 3(c) shows the velocity change determined with the application of a standard

FWI (Tarantola, 1984) for the same monitor data using the velocity model obtained from

IDWT as a starting model. Both the amplitude of the anomaly, and the distribution of the

velocity are improved as FWI inverts more phase and amplitude changes.
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For comparison, we compute a standard FWI on the monitor data starting from the

correct baseline velocity and density models. Figure 3(d) shows the result. The inversion

gives poor recovery of the velocity anomaly because of several issues. First, the velocity

change is large enough to cause cycle skipping in the data domain. Second, FWI with this

narrow-offset survey geometry reduces to least-squares migration, so that the volumetric

velocity change is barely resolved. Instead, a reflector that does not exist in the true velocity

model is generated to fit the data.

Figure 4 shows cost-function curves for IDWT, FWI, and FWI after IDWT. IDWT

converges within 10 iterations, while FWI converges much slower, both after IDWT and

for FWI alone. The cost function for FWI alone plateaus after 10 iterations, because the

residual is insensitive to velocity perturbations, due to cycle-skipping. FWI after IDWT

converges with a lower cost than does FWI alone, but remarkably slower than does IDWT.

However IDWT requires four wavefield calculations to obtain the gradient in each itera-

tion, and two wavefield calculations are required for one migration. Assuming each wave

propagation calculation takes time T , and each line search takes 3 migrations, the actual

computational cost of IDWT is 10 times that for computing N wavefields, where N is the

number of IDWT iterations. Similarly, because it requires 3 forward models per line search,

one FWI iteration takes 5T . In this example, to get the final model in Figure 3(c), we used

10 IDWT iterations, and 20 FWI iterations. Thus the total computation time is 200T, of

which 50% is used in IDWT.
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Multi-layer Model

As shown in the three-layer model example, the smearing of the time-lapse velocity change

is bounded by the reflectors. We expect that smaller reflector spacing will lead to a better

determined anomaly. To investigate this, we use a multi-layer model to simulate the case

where time-lapse changes span several layers. A constant velocity (vp = 3000 m/s) is used

for the baseline model. The time-lapse velocity model is the same as that in Figure 1(b).

A six-layer density model as shown in Figure 5(a) is used to generate reflections. Layer

thicknesses in the center of the model are smaller than the size of the velocity anomaly in

Figure 1(b).

Figure 5 shows the velocity changes resolved by IDWT using different numbers of shots.

Only one single shot placed in the center on the surface is used in Figure 5(b). Compared

with the results in Figure 3(a), the anomaly is much better constrained vertically by the

second and fourth reflectors in the model. Correspondingly, the magnitude of the velocity

anomaly is better recovered; 10 and 20 shots are used evenly spaced at intervals of 265

and 125 meters in Figure 5(c) and 5(d) respectively. The shape and relative magnitude

distribution are improved with additional shots.

Baseline Velocity Errors

For all the previous examples, we assumed that the baseline model was exactly known. In

practice, it is more likely that the baseline velocity model we build is inaccurate. To study

the robustness of IDWT to errors in the baseline velocity, we use the model in Figure 6(a),

which contains a Gaussian-shaped low velocity zone, as the true baseline velocity model.

We assume the anomaly is not resolved by the baseline velocity model building and so a
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constant velocity model is used for the baseline migration. We use the density model in

Figure 5(a) with 20 shots evenly spaced at an interval of 125 meters on the surface to

generate synthetic data. The true time-lapse velocity model (Figure 6(c)) has an additional

high velocity Gaussian-shaped anomaly, which is the net change between baseline and time-

lapse models (Figure 6(b)). The peak magnitude of both anomalies is 200 m/s.

Figure 6(d) shows the IDWT result obtained when using 20 shots. Compared with

the result obtained using the correct baseline model (Figure 5(d)), the resolved time-lapse

anomaly maintains the same quality in both shape and magnitude. More importantly, there

are no negative velocity changes apparent in the result. The baseline velocity model error

(the negative Gaussian-shaped anomaly) is not carried over to the time-lapse inversion.

In other words, IDWT detects only the relative changes in the models. A close scrutiny

of Figure 5(d) and Figure 6(d) reveals that the shape of the resolved change is slightly

distorted because of the kinematic error induced by the unknown Gaussian anomaly in

Figure 6(a). We expect the distortion to get stronger with bigger errors in the baseline

velocity model. We test this with the model shown in Figure 6(e), in which we increase the

maximum amplitude of the low velocity error in the baseline model to 800 m/s. The IDWT

result with 20 shots, shown in Figure 6(f), is severely distorted in shape but the amplitude

and position are still accurately recovered.

Source Geometry Non-repeatability

Seismic survey repeatability is a key factor in achieving successful time-lapse monitoring.

One common issue is the discrepancy of source-receiver geometry between surveys. A small

deviation of the source position in the monitor survey from that of the baseline, can lead to
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large differences in waveforms, which makes direct comparison between datasets difficult.

Time-lapse FWI methods, such as double-difference waveform tomography, which requires

data subtraction (Denli and Huang, 2009; Watanabe et al., 2005), must carefully co-process

the baseline and monitor datasets. In IDWT, instead of data, we compare images, which

are less sensitive to shot position deviations. With the correct velocity model, neighboring

sources should give very similar images. As a result, when they are migrated with the

same baseline velocity, differences between a monitor image for shot position x + δx, and

a baseline image for shot position x should still relate to time-lapse velocity changes. We

expect IDWT to be robust to this type of source geometry difference between surveys.

We employ the baseline velocity models used in previous examples, with the constant

velocity, weak Gaussian anomaly (200 m/s), and strong Gaussian anomaly (800 m/s). The

maximum value of the time-lapse change is 200 m/s. The density model is the same as

that in Figure 5(a). For the baseline survey, 15 sources are evenly spaced at an interval

of 170 meters, and 300 receivers are evenly spaced at an interval of 10 meters. For the

monitor survey, we only consider source positioning errors. Because IDWT is conducted

with shot gathers, the effects from receiver positioning errors should be negligible as long as

they cover the same area. Two types of source positioning errors are commonly observed in

practice: random perturbations (e.g. limited GPS precision), and systematic perturbations

(e.g. feathering effects in acquisition).

For random perturbations, we randomly perturbed each source either one grid point

left or one grid point right from its baseline position. The grid spacing is 10 meters in our

tests, which is large compared to position errors observed in some well-repeated surveys in

practice (Yang et al., 2013). In addition, position errors in reality would not be uniformly

±10 meters. However, we do not expect this to have a large effect on the results.
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Figure 7 shows the IDWT results with different levels of baseline velocity errors but

with the same randomly perturbed source positions. There is no baseline velocity error in

Figure 7(a). The baseline velocity models used in Figure 7(b) and (c) have Gaussian-shaped

errors of 200 m/s and 800 m/s peak value respectively. The one-to-one comparison between

Figure 7(a), (b), (c) and Figure 5(d), Figure 6(d), Figure 6(f) show that the random source

position perturbations have little effect on the performance of IDWT.

To study the effect of systematic perturbations, we move the monitor survey source posi-

tions uniformly towards the right. Three levels of shot position error are studied: δx equals

10 meters, 20 meters and 50 meters. The monitor datasets are generated and migrated

using the perturbed source locations. Figure 8(a), (b) and (c) show the IDWT results with

the known constant baseline velocity model. The time-lapse velocity anomalies are resolved

with the same quality in all three cases with increasing shot positioning error. Artifacts

near the sources result from illumination differences between baseline and monitor surveys.

As we discussed for the three-layer model, when the shot positions are the same in both

surveys, the smeared updates near the sources are diminished by iteratively correcting the

image of the shallower reflector. However, when the shot positions are different, as illus-

trated in Figure 9, parts of the monitor image have no corresponding parts in the baseline

image (dashed circles). As a result, part of the velocity update cannot be constructed be-

cause the unconstrained parts of the image marked by arrows in Figure 9 are insensitive to

that velocity change. At greater depth, this effect is mitigated by stacking shots, but the

effect of stacking is weak near the sources. If the targeted area is deep in the subsurface,

these artifacts will not affect the interpretation. If the monitor image is compared to the

entire image formed by all the baseline shots, this effect will be eliminated because the

shadowed areas in Figure 9 will be covered by baseline images of neighboring shots.
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Figure 8(d), (e) and (f) show the IDWT results with a weak Gaussian velocity error

(200 m/s) in the baseline model. As the shot positioning error increases, the error induced by

the incorrect baseline velocity model, marked by black circles, gets stronger. The principle

that neighboring shots should give similar images is violated because the baseline velocity is

incorrect. As a result, differences between baseline and monitor images are caused by both

the baseline velocity errors and the time-lapse velocity changes. The difference caused by

baseline velocity error is bigger when two shots are further apart. Accordingly, velocity error

increases as the shot positioning error increases. In addition, the velocity error is inverted

with a reverse sign, because the monitor image is aligned with the incorrect baseline image.

For example, if the low-velocity region in the baseline model is unknown (i.e., not included

in the model for migration), the reflectors imaged by a source that illuminates the anomaly

will be deeper than their true positions. Regardless of the time-lapse changes, IDWT would

assume the baseline image is correct, and perturb the velocity to make monitor image

reflectors deeper, leading to a high velocity update.

Figure 8(g), (h) and (i) show the IDWT results with the strong Gaussian velocity error

(800 m/s) in the baseline model. As expected, the larger error induces bigger false changes

(located inside the black circles) in the time-lapse inversions. In Figure 8(i), the false

changes already have the same order of magnitude as the time-lapse changes when the

source positioning error is 50 meters. In this case, an interpretation would likely be affected

by the velocity error. However, an 800 m/s velocity error in the baseline model is significant,

and source positioning errors of 50 meters are excessive in a well-repeated 4D seismic survey.

Based on the tests shown in this section, we conclude that for relatively large errors in the

baseline velocity model, and for both random and systematic source geometry discrepancies

between surveys, IDWT is robust and expected to be capable of delivering useful inversion
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results.

Marmousi Model

For a more realistic synthetic test, we apply IDWT using the Marmousi model (Versteeg,

1994). As shown in Figure 10(a), only part of the original Marmousi model with complicated

geologic structures is used to better simulate narrow-offset acquisition. Five shots evenly

spaced at an interval of 200 meters (red stars) are used to generate the synthetic datasets,

and 400 receivers are deployed on the surface at an interval of 5 meters. Figure 10(b) shows

the true time-lapse velocity model with a velocity decrease in the layers at around 1900

meters depth. The actual boundary of the velocity anomaly is outlined by the black dashed

line. The density is constant throughout the model.

We smooth the Marmousi model to generate the baseline model for migration as shown

in Figure 11(a). Figure 11(b) shows the migrated image with one shot gather of the baseline

datasets. Due to the limited aperture of the acquisition, some of the structures (marked

by arrows in Figure 11(b)) are not illuminated. The layers in these areas are completely

missing in the image. The reflectors above and below the layer containing the time-lapse

changes (dashed line in Figure 11(b)) are clearly imaged.

The IDWT result obtained using these 5 shots is shown in Figure 12(b). The resolved

anomaly is localized within the area enclosed by the dashed line. Both the shape and

amplitude of the anomaly are well recovered. The true change, as shown in Figure 12(a),

has small values near the boundary of the anomaly (dashed line). In contrast, the inverted

change appears to be larger in size due to vertical smearing between reflectors. The arrow in

Figure 12(b) points to a location where the inverted anomaly spreads beyond the boundary
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of the actual anomaly but is well-constrained by the reflector below. The smearing occurs

because the boundary of the true time-lapse change, marked by the arrow in Figurer 10(b),

is in the middle of the layer. As we observed for the layered-model examples, velocity

changes within a single interval are vertically smeared throughout the layer but bounded

by the reflectors. With this limitation, IDWT is again effective in recovering the local

time-lapse velocity change.

DISCUSSION

From synthetic examples, we see that IDWT is able to robustly recover time-lapse velocity

changes, with acquisition limitations, such as narrow offsets and survey non-repeatability.

As with most tomography methods, IDWT smears velocity changes along wave-paths. How-

ever, the smearing effect is clearly bounded by reflectors above and below the changes. This

effect is important for leakage monitoring when the ambiguity between the smearing and

real leakage must be removed. Smaller differences between the boundary of the changes

and the reflector boundaries lead to more reliable estimates of velocity changes. Better

estimates of the velocity changes lead to more reliable interpretations of the changes.

In time-lapse inversions, we are interested in the relative changes between the surveys at

different times. However, the data residuals due to the uncertainty in the baseline inversion

are likely to contaminate the final result of time-lapse FWI. Tailored FWI schemes have

been developed to suppress these sources of noise (Denli and Huang, 2009; Yang et al.,

2011). In IDWT, errors in the baseline model affect both the baseline and monitor images.

As the monitor images match the baseline ones, any perturbation in the velocity model

is caused by the kinematic difference between monitor and baseline datasets. Even with

large baseline velocity errors, IDWT recovers the correct magnitude and position of velocity
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changes.

Another concern for time-lapse monitoring is the repeatability of surveys. In practice,

shot and receiver locations are not identical between surveys, even for high-quality ocean

bottom cables (Beasley et al., 1997; Yang et al., 2013). In some cases, after the initial large

survey for exploration, specialized local surveys for monitoring are more economical and

efficient (Hatchell et al., 2013). Deviations between survey geometries cause problems in

time-lapse FWI methods that require data subtractions (Denli and Huang, 2009; Watanabe

et al., 2005). In contrast, IDWT depends only weakly on the survey geometry. With a good

baseline model, IDWT delivers accurate results, as long as the monitor survey illuminates

an area of interest that is also well-imaged with the baseline survey. When large errors

(e.g., 800 m/s) exist in the baseline model, IDWT still produces reasonable results when

differences in survey geometries are considerable (e.g., 50 m).

From a computational point of view, IDWT requires two wavefield extrapolations for

each migration. With the same wave equation solver, it takes twice as much time as FWI

for each iteration. However, it is not necessary to simulate the full wavefield to form the

images. The image warping cost function is sensitive only to misalignments, and is robust to

inaccuracy in simulated waveform amplitudes. In contrast, traditional FWI needs accurate

amplitudes so that differences between waveforms are reliable. We could potentially use

a faster traveltime solver like ray-tracing to speed up IDWT. Another possible concern

is the memory requirement for IDWT. While RTM or FWI need to store two wavefields

for calculating the gradient, IDWT needs to store four wavefields, which could be too

demanding in a 3D application. Symes (2007) presented an optimal checkpointing method

that trades floating point operations for most of the storage in general adjoint computations.

Although the memory requirement is still going to be twice that of FWI, it should be
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manageable in practice.

Although the time per iteration is twice that of FWI, IDWT appears to converge more

quickly. Therefore, when using IDWT before FWI to resolve velocity anomalies with high

resolution, the actual computation of IDWT does not dominate the cost of the overall

process. As in the first synthetic example in this study, IDWT takes only 50% of the total

cpu runtime of the process. When large velocity changes exist, the cycle skipping effect

makes the regular FWI cost function insensitive to velocity updates. IDWT using image

warping helps to find a good starting model with correct large-scale kinematics for FWI.

For initial velocity model building, ideas similar to image-warping can be implemented in

the data domain to avoid cycle-skipping. However, with reflection geometries, FWI fails

to invert for volumetric changes in velocity, and the result tends to be like that of a least-

squares migration. Ma and Hale (2013) have successfully overcome this problem. However,

to extend their method to time-lapse applications requires further study.

Beyond the theory and numerical studies presented here, we have applied IDWT to

field datasets (time-lapse walkaway Vertical Seismic Profiles) that were collected from a

CO2 sequestration testing site, and successfully recovered P-wave velocity changes that can

not be resolved by full waveform inversion (Yang et al., 2014). With very limited survey

apertures and the presence of strong noise in real data, stacking images of neighboring

shots would increase the signal-noise ratio and mitigate imaging artifacts without losing

much angle information if the source distribution is dense. Studies with more field datasets

of different acquisition conditions and different time-lapse mechanisms (e.g. water flood,

gas leakage) are planned for the near future.
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CONCLUSION

We have proposed a time-lapse wavefield tomography method in the image domain for

reflection data. The warping between baseline and monitor images is used as a cost function

that is sensitive to smooth velocity perturbations, and robust to cycle-skipping errors. The

method is accurate and wave-equation based, and requires no linearization or assumptions

about the smoothness of the model. It is computationally efficient with fast convergence,

and does not require the computation of angle gathers. Even with limited acquisitions,

such as narrow offsets and small numbers of sources, and for complex subsurface structures,

IDWT delivers reliable time-lapse inversion results. It is also robust with respect to baseline

velocity errors and survey geometry discrepancies between surveys. With IDWT, kinematic

effects are distinguished from other time-lapse effects, thereby providing a good foundation

for subsequent analysis of amplitudes and reservoir characterization.
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APPENDIX A

ADJOINT METHOD FOR IDWT

Here we present the mathematical derivation of the adjoint wavefields and the gradient for

IDWT using the associate Lagrangian in the time domain. Following the approach of Plessix

(2006), the steps of the derivation are: for model parameter m, and cost function J(m),

(i) list all the state equations Fi = 0;

(ii) build the augmented functional L by associating the independent adjoint state vari-

ables λi with the state equations Fi;

(iii) define the adjoint-state equations by ∂L
∂λi

= 0;

(iiii) compute the gradient by ∂L
∂m = ∂J

∂m .

To make the process less complicated, we derive everything based on a single shot in a

2-D space. A more general derivation can be easily achieved by summing over all the shots.

The extension to 3-D is straightforward by applying an integral over y. The least-square

functional is:

J(m) =
1

2

∫
x

∫
z
|w(x, z)|2dxdz, (A-1)

where w(x, z) is the warping function that minimizes

D(w(x, z)) =
1

2

∫
x

∫
z
|I1(x, z)− I0(x, z + w(x, z))|2dxdz, (A-2)

where I0(x, z) is the baseline image that stays invariant throughout the process, and I1(x, z)

is the monitor image based on the slowness model m. The first derivative of the function

with respect to w(x, z) should be close to zero at the minimum point:

∂D

∂w
(x, z) = (I1(x, z)− I0(x, z + w(x, z)))

∂I0(x, z + w(x, z))

∂z
≈ 0. (A-3)
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I1(x, z) is obtained from the imaging condition:

I1(x, z) =

T∫
0

us(x, z, t)ur(x, z, T − t)dt. (A-4)

us is the source wavefield obtained by solving the following wave equations:

m∂2us(t)
∂t2

−∆us(t) = fs

us(x, z, 0) = 0

∂us(x,z,0)
∂t = 0

. (A-5)

ur is the receiver wavefield obtained by solving the following equations:

m∂2ur(t)
∂t2

−∆ur(t) = d(T − t)

ur(x, z, 0) = 0

∂ur(x,z,0)
∂t = 0.

. (A-6)

For simplicity, the spatial boundary conditions are left unspecified because any condition

that guarantees a unique solution is acceptable. In our numerical examples, we use absorbing

boundary conditions.

Using the Lagrangian formulation, we associate the adjoint states µ̃0s, µ̃
1
s, µ̃

0
r , µ̃

1
r with

the initial conditions in Equation A-5 and A-6, respectively. Adjoint states λ̃s and λ̃r are

associated with the wave equations in Equation A-5 and A-6. Adjoint states φ̃I and φ̃w

are associated with Equation A-4 and A-3. With the operations above, the augmented

functional is defined by:

L(φ̃I , φ̃w, λ̃s, λ̃r, µ̃
0
s, µ̃

1
s, µ̃

0
r , µ̃

1
r , ũs, ũr, Ĩ1, w̃,m) =∫

x

∫
z

1

2
|w̃(x, z)|2dxdz

−
T∫
0

〈λ̃s,m
∂2ũs(t)

∂t2
−∆ũs(t)− fs〉x,zdt− 〈µ̃0s, ũs(0)〉x,z − 〈µ̃1s,

∂ũs(0)

∂t
〉x,z

−
T∫
0

〈λ̃r,m
∂2ũr(t)

∂t2
−∆ũr(t)− d(T − t)〉x,zdt− 〈µ̃0r , ũr(0)〉x,z − 〈µ̃1r ,

∂ũr(0)

∂t
〉x,z
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−〈φ̃I , Ĩ1(x, z)−
T∫
0

us(x, z, t)ur(x, z, T − t)dt〉x,z

−〈φ̃w,−(Ĩ1(x, z)− Ĩ0(x, z + w̃(x, z))
∂Ĩ0(x, z + w̃(x, z))

∂z
〉x,z (A-7)

with 〈λ̃s, ũs〉x,z =
∫
x

∫
z λ̃s(x, z)ũs(x, z)dxdz the real scalar product in space. By two inte-

grations over t by parts, we switch the second order time derivative operator from ũs to

λ̃s:

T∫
0

〈λ̃s,m
∂2ũs(t)

∂t2
〉x,zdt =

T∫
0

〈m∂2λ̃s(t)

∂t2
, ũs〉x,zdt+ 〈λ̃s(T ),m

∂ũs(T )

∂t
〉x,z − 〈λ̃s(0),m

∂ũs(0)

∂t
〉x,z

−〈m∂λ̃s(T )

∂t
, ũs(T )〉x,z + 〈m∂λ̃s(0)

∂t
, ũs(0)〉x,z. (A-8)

The same operation is applied to similar terms:
T∫
0
〈λ̃r,m∂2ũr(t)

∂t2
〉x,zdt,

T∫
0
〈λ̃s,∆ũs(t)〉x,zdt and

T∫
0
〈λ̃r,∆ũr(t)〉x,zdt.

With Equation A-7 and A-8, we can compute the derivatives with respect to the ad-

joint states, and evaluate them at (λs, λr, us, ur, φI , I1, φw, w) to obtain the adjoint-state

equations. With respect to ũs, we have equations:

m∂2λs(t)
∂t2

−∆λs(t) = φI(−ur(T − t))

λs(T ) = 0

∂λs(T )
∂t = 0

. (A-9)

With respect to ũr, we have equations:

m∂2λr(t)
∂t2

−∆λr(t) = φI(−us(T − t))

λr(T ) = 0

∂λr(T )
∂t = 0

. (A-10)
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With respect to Ĩ1 and w̃ we have equations:

−φI − φw(−∂I0(x,z+w(x,z))
∂z ) = 0

w − φw(−Π) = 0

Π = (∂I0(z+w(x,z))∂z )2 − ∂2I0(z+w(x,z))
∂z2

(I1(x, z)− I0(x, z + w(x, z)))

. (A-11)

By taking the derivative of L with respect to the model parameter m, we have the

gradient of the cost function:

∂L

∂m
=
∂J(m)

∂m
= −

T∫
0

∂2λs(x, z, t)

∂t2
us(x, z, t) +

∂2λr(x, z, t)

∂t2
ur(x, z, t)dt (A-12)

26



REFERENCES

Arts, R., O. Eiken, A. Chadwick, P. Zweigel, B. van der Meer, and G. Kirby, 2004, Seismic

monitoring at the Sleipner underground CO2 storage site (North Sea): Geological Society,

London, Special Publications, 233, 181–191.

Asnaashari, A., R. Brossier, S. Garambois, F. Audebert, P. Thore, and J. Virieux, 2011,

Sensitivity analysis of timelapse images obtained by differential waveform inversion with

respect to reference model: SEG Technical Program Expanded Abstracts 2011.

Barkved, O. I., and T. Kristiansen, 2005, Seismic time-lapse effects and stress changes

examples from a compacting reservoir: The Leading Edge, 24, 1244–1248.

Baysal, E., D. D. Kosloff, and J. W. C. Sherwood, 1983, Reverse time migration: Geo-

physics, 48, 1514–1524.

Beasley, C., R. Chambers, R. Workman, K. Craft, and L. Meister, 1997, Repeatability of

3-D ocean bottom cable seismic surveys: The Leading Edge, 16, 1281–1286.

Bickle, M., A. Chadwick, H. Huppert, M. Hallworth, and S. Lyle, 2007, Modeling carbon

dioxide accumulation at Sleipner: Implications for underground carbon storage: Earth

and Planetary Science Letters, 255, 164–176.

Biondi, B., and A. Almomin, 2012, Tomographic full waveform inversion (TFWI) by com-

bining full waveform inversion with wave-equation migration velocity analysis: SEG Tech-

nical Program Expanded Abstracts 2012, doi:10.1190/segam2012–0275.1.

Cox, B., and P. Hatchell, 2008, Straightening out lateral shifts in time-lapse seismic: First

Break, 26.

Dadashpour, M., M. Landrø, and J. Kleppe, 2008, Nonlinear inversion for estimating reser-

voir parameters from time-lapse seismic data: Journal of Geophysics and Engineering, 5,

54.

27



Denli, H., and L. Huang, 2009, Double-difference elastic waveform tomography in the time

domain: SEG Technical Program Expanded Abstracts, 28, 2302–2306.

Hale, D., 2013, Dynamic warping of seismic images: Geophysics, 78, S105–S115.

Hale, D., B. Cox, and P. Hatchell, 2008, Apparent horizontal displacements in time-lapse

seismic images: SEG Technical Program Expanded Abstracts 2008, 3169–3173.

Hatchell, P., K. Wang, J. Lopez, J. Stammeijer, and M. Davidson, 2013, Instantaneous 4D

seismic (i4D) for offshore water injection monitoring: SEG Technical Program Expanded

Abstracts 2013, 4885–4889.

Landrø, M., and J. Stammeijer, 2004, Quantitative estimation of compaction and velocity

changes using 4D impedance and traveltime changes: Geophysics, 69, 949–957.

Lumley, D. E., 2001, Time-lapse seismic reservoir monitoring: Geophysics, 66, 50–53.

Ma, Y., and D. Hale, 2013, Wave-equation reflection traveltime inversion with dynamic

warping and full-waveform inversion: Geophysics, 78, R223–R233.

McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values:

Geophysical Prospecting, 31, 413–420.

Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a

functional with geophysical applications: Geophysical Journal International, 167, 495–

503.

Shragge, J., T. Yang, and P. Sava, 2013, Time-lapse image-domain tomography using

adjoint-state methods: Geophysics, 78, A29–A33.

Sun, D., and W. W. Symes, 2012, Waveform inversion via nonlinear differen-

tial semblance optimization: SEG Technical Program Expanded Abstracts 2012,

doi:10.1190/segam2012–1190.1.

Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics, 72,

28



SM213–SM221.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation:

Geophysics, 49, 1259–1266.

Versteeg, R., 1994, The Marmousi experience: Velocity model determination on a synthetic

complex data set: The Leading Edge, 13, 927–936.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration

geophysics: Geophysics, 74, WCC1–WCC26.

Watanabe, T., S. Shimizu, E. Asakawa, and T. Matsuoka, 2005, Differential waveform to-

mography for time-lapse crosswell seismic data with application to gas hydrate production

monitoring: SEG Technical Program Expanded Abstracts 2005.

Yang, D., M. Fehler, A. Malcolm, and L. Huang, 2011, Carbon sequestration monitoring

with acoustic double-difference waveform inversion: A case study on SACROC walkaway

VSP data: SEG Technical Program Expanded Abstracts, 30, 4273–4277.

Yang, D., M. Fehler, A. Malcolm, F. Liu, and S. Morton, 2013, Double-difference wave-

form inversion of 4D ocean bottom cable data: Application to Valhall, North Sea: SEG

Technical Program Expanded Abstracts 2013, 4966–4970.

Yang, D., A. Malcolm, M. Fehler, and L. Huang, 2014, Time-lapse walkaway vertical seismic

profile monitoring for CO2 injection at the SACROC enhanced oil recovery field: A case

study: Geophysics, 79, B51–B61.

Yang, D., Y. Zheng, M. Fehler, and A. Malcolm, 2012, Target-oriented time-lapse wave-

form inversion using virtual survey: SEG Technical Program Expanded Abstracts 2012,

doi:10.1190/segam2012–1308.1.

29



LIST OF FIGURES

1 (a).The three-layer density model for both baseline and monitor surveys. Red

Stars denote the locations of the shots, and blue triangles denote the receiver locations.

(b). Differences in the P-wave velocities between baseline and monitor surveys. Maximum

velocity change is 800m/s. (c) The baseline image I0 obtained using one shot gather and

the constant velocity model. (d) The monitor image I1 obtained using one shot gather and

the constant velocity model. The center part of the second reflector is vertically shifted due

to the absence of the velocity anomaly in (b).

2 The image warping function w(x, z) calculated from Figure 1(c) and 1(d). Units

on the color scale are image points. Positive values indicate upwards shifts. The maximum

warping is 4 grid points (i.e. 40 meters).

3 (a). The velocity changes found by IDWT with 5 sources. The anomaly is cor-

rectly positioned. However, the limited aperture of the acquisition makes the waves travel

primarily in the vertical direction, so the recovered velocity anomaly is smeared vertically.

(b). The monitor migration image obtained using one shot gather and the velocity model

inverted by IDWT. The second reflector is correctly positioned. (c). The velocity changes

refined by FWI after IDWT. The amplitude differences and subtle phase shifts between

data and simulation are minimized to resolve the fine details in the velocity model. FWI

has significantly reduced the vertical smearing observed in Figure 3(a). (d). The velocity

changes obtained with standard FWI applied to the monitor data, starting from the baseline

constant background velocity model. The Gaussian anomaly is barely visible. An artificial

reflector is erroneously created to account for data differences. This failure is due to the

combined effects of cycle skipping and limited survey geometry.

4 Cost function curves for IDWT, FWI after IDWT, and FWI only. The cost func-
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tions are normalized by their values before the 1st iterations. IDWT converged within 10

iterations. FWI after IDWT converged much slower. The cost function of FWI starting

from the constant velocity plateaued after 10 iterations.

5 (a). The six-layer baseline and time-lapse density model. Layers in the center are

smaller in thickness than the size of time-lapse velocity anomaly (white circle). (b), (c)

and (d) show the IDWT results with 1 shot, 10 shots and 20 shots, respectively. As we in-

clude more shots, the amplitude distribution within the anomaly is corrected. The vertical

smearing is well constrained by the reflector. The maximum velocity change is closer to the

true value as the changes are confined to a smaller area.

6 (a). True baseline velocity model with a Gaussian anomaly with peak velocity

change of 200 m/s. We assume the anomaly is not known, and use a constant velocity

model for the baseline migrations. (b). True time-lapse velocity changes with peak value of

200 m/s. (c). True time-lapse velocity model I with two Gaussian anomalies ((a) plus (b)).

(d). The time-lapse velocity changes found using IDWT.(e). True time-lapse velocity model

II. We increase the peak amplitude of the Gaussian anomaly in the baseline velocity model

to 800 m/s, and use the same time-lapse velocity changes as in (b). (f). The time-lapse

velocity changes inverted by IDWT. The shape of the anomaly is distorted because of the

large error in the baseline velocity model, but the basic location and amplitude is preserved.

7 This figure shows robustness tests of IDWT to random source positioning errors

and baseline velocity errors. The sources in the monitor survey are randomly shifted ±10

meters from their baseline positions. The baseline velocity error for each case has maximum

value of 0 (a), 200 (b) and 800 m/s (c). Compared to the case where there is no misposi-

tioning in Figures 5(d), 6(d), and 6(f), the random source positioning error has little effect

on the performance of IDWT.
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8 Robustness tests of IDWT against source positioning error plus baseline velocity

error. In the 3x3 plot, the monitor survey sources are systematically shifted 10, 20 and

50 meters from their correct positions for each column, respectively. The baseline velocity

error for each row has maximum value of 0, 200 and 800 m/s. Black dotted circles mark

the areas where false velocity changes are resolved due to the baseline velocity error, which

is at the same location as shown in Figure 6(e).

9 Migrated images for one baseline shot and one shifted monitor shot. Dotted lines

show the wave paths along which velocities are updated. Portions of the monitor migrated

image marked as unconstrained image (dashed circles), have no corresponding image points

from the baseline image.

10 (a). The center part of the original Marmousi model is used as the true baseline

velocity model. The maximum source-receiver offset is 2 km. Five shots (red stars) are used

to generated synthetic data. (b). True time-lapse velocity model with a negative velocity

change marked with a black dashed line. The black arrow points to the area where the

boundary of the changes is located in the middle of the layer. We designed this half-layer

velocity change intentionally to show how IDWT would smear the changes within a layer.

11 (a). A smoothed version of the Marmousi model is used as the baseline model for

migration. (b). Migrated image for one shot (red star). Areas pointed to by arrows are

poorly imaged due to the limited receiver aperture. Dashed lines mark the boundary of the

velocity changes. The interfaces above and below the anomaly are well-imaged.

12 (a). The true time-lapse velocity changes. The anomaly is smooth at its boundary

(dashed lines). (b). The inverted time-lapse changes using IDWT with 5 shots. The black

arrow points to the area where the inverted velocity changes diffuse across the boundary of

the true changes (dashed lines), and are both smeared towards and bounded by the lower
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interface of this layer.
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(a) (b)

(c) (d)

Figure 1: (a).The three-layer density model for both baseline and monitor surveys. Red

Stars denote the locations of the shots, and blue triangles denote the receiver locations.

(b). Differences in the P-wave velocities between baseline and monitor surveys. Maximum

velocity change is 800m/s. (c) The baseline image I0 obtained using one shot gather and

the constant velocity model. (d) The monitor image I1 obtained using one shot gather and

the constant velocity model. The center part of the second reflector is vertically shifted due

to the absence of the velocity anomaly in (b).

– GEO-2013-0424
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Figure 2: The image warping function w(x, z) calculated from Figure 1(c) and 1(d). Units

on the color scale are image points. Positive values indicate upwards shifts. The maximum

warping is 4 grid points (i.e. 40 meters).

– GEO-2013-0424
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(a) (b)

(c) (d)

Figure 3: (a). The velocity changes found by IDWT with 5 sources. The anomaly is

correctly positioned. However, the limited aperture of the acquisition makes the waves

travel primarily in the vertical direction, so the recovered velocity anomaly is smeared

vertically. (b). The monitor migration image obtained using one shot gather and the

velocity model inverted by IDWT. The second reflector is correctly positioned. (c). The

velocity changes refined by FWI after IDWT. The amplitude differences and subtle phase

shifts between data and simulation are minimized to resolve the fine details in the velocity

model. FWI has significantly reduced the vertical smearing observed in Figure 3(a). (d).

The velocity changes obtained with standard FWI applied to the monitor data, starting

from the baseline constant background velocity model. The Gaussian anomaly is barely

visible. An artificial reflector is erroneously created to account for data differences. This

failure is due to the combined effects of cycle skipping and limited survey geometry.

– GEO-2013-0424
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Figure 4: Cost function curves for IDWT, FWI after IDWT, and FWI only. The cost

functions are normalized by their values before the 1st iterations. IDWT converged within

10 iterations. FWI after IDWT converged much slower. The cost function of FWI starting

from the constant velocity plateaued after 10 iterations.
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(a) (b)

(c) (d)

Figure 5: (a). The six-layer baseline and time-lapse density model. Layers in the center

are smaller in thickness than the size of time-lapse velocity anomaly (white circle). (b),

(c) and (d) show the IDWT results with 1 shot, 10 shots and 20 shots, respectively. As

we include more shots, the amplitude distribution within the anomaly is corrected. The

vertical smearing is well constrained by the reflector. The maximum velocity change is

closer to the true value as the changes are confined to a smaller area.

– GEO-2013-0424
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a). True baseline velocity model with a Gaussian anomaly with peak velocity

change of 200 m/s. We assume the anomaly is not known, and use a constant velocity

model for the baseline migrations. (b). True time-lapse velocity changes with peak value of

200 m/s. (c). True time-lapse velocity model I with two Gaussian anomalies ((a) plus (b)).

(d). The time-lapse velocity changes found using IDWT.(e). True time-lapse velocity model

II. We increase the peak amplitude of the Gaussian anomaly in the baseline velocity model

to 800 m/s, and use the same time-lapse velocity changes as in (b). (f). The time-lapse

velocity changes inverted by IDWT. The shape of the anomaly is distorted because of the

large error in the baseline velocity model, but the basic location and amplitude is preserved.
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Figure 7: This figure shows robustness tests of IDWT to random source positioning errors

and baseline velocity errors. The sources in the monitor survey are randomly shifted ±10

meters from their baseline positions. The baseline velocity error for each case has maximum

value of 0 (a), 200 (b) and 800 m/s (c). Compared to the case where there is no misposi-

tioning in Figures 5(d), 6(d), and 6(f), the random source positioning error has little effect

on the performance of IDWT.
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Figure 8: Robustness tests of IDWT against source positioning error plus baseline velocity

error. In the 3x3 plot, the monitor survey sources are systematically shifted 10, 20 and

50 meters from their correct positions for each column, respectively. The baseline velocity

error for each row has maximum value of 0, 200 and 800 m/s. Black dotted circles mark

the areas where false velocity changes are resolved due to the baseline velocity error, which

is at the same location as shown in Figure 6(e).
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Figure 9: Migrated images for one baseline shot and one shifted monitor shot. Dotted lines

show the wave paths along which velocities are updated. Portions of the monitor migrated

image marked as unconstrained image (dashed circles), have no corresponding image points

from the baseline image.
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Figure 10: (a). The center part of the original Marmousi model is used as the true baseline

velocity model. The maximum source-receiver offset is 2 km. Five shots (red stars) are used

to generated synthetic data. (b). True time-lapse velocity model with a negative velocity

change marked with a black dashed line. The black arrow points to the area where the

boundary of the changes is located in the middle of the layer. We designed this half-layer

velocity change intentionally to show how IDWT would smear the changes within a layer.

– GEO-2013-0424

43



Ground Distance (km)

D
e

p
th

 (
k
m

)

 

 
Velocity (m/s)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2500

3000

3500

4000

4500

5000

(a) (b)

Figure 11: (a). A smoothed version of the Marmousi model is used as the baseline model

for migration. (b). Migrated image for one shot (red star). Areas pointed to by arrows are

poorly imaged due to the limited receiver aperture. Dashed lines mark the boundary of the

velocity changes. The interfaces above and below the anomaly are well-imaged.
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Figure 12: (a). The true time-lapse velocity changes. The anomaly is smooth at its bound-

ary (dashed lines). (b). The inverted time-lapse changes using IDWT with 5 shots. The

black arrow points to the area where the inverted velocity changes diffuse across the bound-

ary of the true changes (dashed lines), and are both smeared towards and bounded by the

lower interface of this layer.
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