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SUMMARY

We present a method for recovering time-lapse velocity
changes using full waveform inversion (FWI). In a prepro-
cessing step we invert for a single intermediate model by si-
multaneously minimizing the data misfit in the baseline and
the monitor surveys. We record the individual FWI gradients
corresponding to the baseline and the monitor datasets at each
iteration of the inversion. Regions where these gradients con-
sistently have opposing sign are likely to correspond to loca-
tions of time-lapse change. This insight is used to generate a
spatially varying confidence map for time-lapse change. In a
subsequent joint inversion we invert for baseline and monitor
models while regularizing the difference between the models
with this spatially varying confidence map. Unlike double dif-
ference full waveform inversion (DDFWI) we do not require
identical source and receiver positions in the baseline and mon-
itor surveys.

INTRODUCTION

FWI (Lailly, 1983; Tarantola, 1984; Pratt, 1999) uses the en-
tire seismic record to invert for subsurface material properties
such as seismic velocity and density. When monitoring a reser-
voir, the primary objective is to recover changes in the mate-
rial properties due to production changes. A straight-forward
application of FWI to this time-lapse problem is to invert for
the baseline (i.e., initial) state and the monitor (i.e., new) state
independently. Subtracting these models intuitively approxi-
mates the time-lapse change in material parameters. However,
artifacts are also present due to the nonlinear nature and ill-
posedness of the uncoupled inverse problems for the baseline
and monitor models.

In an attempt to overcome some of these problems Watan-
abe et al. (2004) and Denli et al. (2009) introduced DDFWI
for monitoring production related changes. In DDFWI the
baseline data residual from an initial baseline inversion is sub-
tracted from the monitor dataset. Conceptually this can be seen
as removing a part of the data that the initial model could not
explain. After the monitor model is inverted from this mod-
ified data and the baseline model is subtracted a better time-
lapse estimate is obtained. The data subtraction in DDFWI im-
poses constraints on the seismic acquisition. Both the source
and receiver locations have to be the same in the baseline and
monitor surveys. Differences are not uncommon in marine sur-
veys as is illustrated for instance by Eggenberger et al. (2014).
These differences will result in artifacts in the velocity change
estimate.

Several methods have been introduced that avoid the require-
ment of identical acquisition. Zamanian et al. (2014) invert
for the time-lapse change by casting the inverse problem in a
hierarchical Bayesian framework. Maharramov et al. (2014)

circumvent some of the problems of subtracting independent
baseline and monitor inversions by swapping baseline and mon-
itor datasets a fixed number of times. In a different approach
Maharramov and Biondi (2014) introduce a joint inversion in
which Total Variation (TV) regularization suppresses the os-
cillatory model-difference artifacts that arise in joint FWI with
noisy datasets. Another approach is to iteratively swap base-
line and monitor datasets in FWI and record which regions
change consistently as a result. This information can be used
to generate a confidence map, which can regularize the model-
difference in a subsequent time-lapse inversion. This was done
by Yang (2014) in a method called Alternating FWI (AFWI).
The idea we introduce in this study is similar to Yang’s ap-
proach. Instead of performing a potentially long sequence of
expensive full waveform inversions for the confidence map,
we perform a single joint inversion with a single model. In
this joint inversion we minimize both the baseline and moni-
tor data residuals with this single intermediate model. Regions
where the gradient of the baseline data term consistently has
a different sign than the gradient of the monitor data term are
considered to be potential regions of time-lapse change. We
quantify this principle and construct a confidence map from
the gradient history. Similar to the work of Yang (2014) we
use this (different) confidence map to regularize the model dif-
ference in a final joint inversion.

METHOD

To obtain a confidence map we first minimize the objective
function

χ̃(m(x)) =
1
2
|F0(m(x))−d0|2d0

+
1
2
|F1(m(x))−d1|2d1

, (1)

where the misfit is χ̃ and a single model m is used to fit both
the baseline data d0 and the monitor data d1 through forward
model F0(m(x)) and F1(m(x)) respectively. The baseline and
monitor acquisition are not required to be the same. Both the
data norms | |d0 and | |d1 are implemented as the L2 norm.
Model regularization can be applied to m but this is not done
in the examples in this study. The gradient of (1) with respect
to the model consists of two parts:

δ χ̃

δm(x)
= g0(x)+g1(x), (2)

where g0(x) and g1(x) are the standard FWI gradients of the
baseline and the monitor data terms. The concepts we intro-
duce in this research are applied to constant density acoustics,
but the ideas extend naturally to different physics. Equation 1
can be minimized with any iterative optimization routine, but
in this research we use L-BFGS (Nocedal and Wright, 2006).
When inverting with the objective function given in (1), we
expect to get an intermediate model m(x) that explains both
the baseline data, d0, and monitor data, d1, as well as pos-
sible. At locations x where there is a real time lapse model
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change we expect that the FWI gradient of the baseline data
term, g0(x), will have the opposite sign to the FWI gradient of
the monitor term, g1(x). Intuitively this means that in regions
of true time-lapse change an inversion using just the baseline
data would move away from intermediate model m in the op-
posite direction to that an inversion using just the monitor data
would move in. This insight can be used when constructing
a confidence map. When inverting for the intermediate model
m(x) with an iterative inversion scheme we can keep the gradi-
ent history of both the data terms. We now define a confidence
map βg(x) based on the gradient history,

βg(x) =
n∑
i

[∣∣sgn(g0,i(x))− sgn(g1,i(x))
∣∣

×
(

1
2
(
|g0,i(x)|+ |g1,i(x)|

))]
, (3)

where g0,i(x) and g1,i(x) are the gradients of the baseline and
monitor terms at iteration i respectively. | f (x)| is the absolute
value of f at each location x and not a norm. To reduce the
effects of differences in illumination we precondition the gra-
dients using the inverse diagonal of the pseudo-Hessian pro-
posed by Shin et al. (2001). The confidence map βg in (3) has
high values when the gradient of the baseline and the moni-
tor term consistently have opposing sign and large amplitude.
The reason for using the entire gradient history instead of the
last iteration is to suppress some of the randomness and the
nonlinear effects that take place when minimizing (1).

The confidence map βg(x) is used in a subsequent joint inver-
sion where the following objective function χ is minimized for
the baseline model m0 and the monitor model m1,

χ(m0(x),m1(x)) =
1
2
|F0(m0(x))−d0|2d0

+
1
2
|F1(m1(x))−d1|2d1

+
1
2

ε

∣∣∣∣m0(x)−m1(x)
βg(x)

∣∣∣∣2
m
. (4)

The data norms | |d0 and | |d1 and the model norm | |m are
implemented as the L2 norm. The scalar ε weights the model
difference regularization term. Depending on the choice of ε ,
the model regularization term can be used to strongly suppress
model differences outside the regions with high beta. Addi-
tional regularization can be applied to the individual models,
but this is not investigated in this study. Note that there is noth-
ing in this formulation that requires the baseline and monitor
acquisitions to be the same. In the remainder of the study we
refer to the process of first minimizing (1) and recording the
gradients in (2) for confidence map (3) and then solving (4) as
Gradient Confidence FWI (GC-FWI).

NUMERICAL INVESTIGATION

The performance of GC-FWI is compared with DDFWI on a
synthetic model under noisy conditions. We compare using un-
realistically favorable conditions for DDFWI. The source and
receiver locations are exactly the same in both surveys and so
is the source wavelet. These tests thus give us a conservative
estimate of the expected improvements from GC-FWI.
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Figure 1: The true baseline model.

Setup of synthetic problem
The model on which the synthetic study is done is the Mar-
mousi model, see Figure 1. The model is discretized using
151 nodes in the z direction and 461 nodes in the x direction.
The node spacing is 20 m in both directions. The baseline and
monitor surveys have 19 identical shot locations equally dis-
tributed over the surface and 461 identical receiver locations.
The source wavelet is a 6 Hz ricker wavelet and is exactly the
same in the baseline and monitor surveys. The same time-
domain solver is used for generating the data and for solving
the inverse problem. The model includes a Perfectly Matched
Layer (PML) on all sides. No model regularization is used on
the individual baseline and monitor models in GC-FWI or in
DDFWI. Uncorrelated Gaussian noise is added to the data. We
define the noise level r as the energy of the noise relative to the
energy of the noiseless signal in the entire seismic survey,

r =

ns∑
i

nr∑
j

nt∑
k

n2
i, j,k

ns∑
i

nr∑
j

nt∑
k

s2
i, j,k

. (5)

In (5), ns is the number of sources, nr is the number of re-
ceivers, and nt is the number of time samples in a trace. For a
specific noise level we first invert for the baseline model start-
ing from a heavily smoothed initial guess. Figure 2 shows that
good reconstruction is achieved for r = 0.64. When compar-
ing DDFWI and GC-FWI at a specific noise level r, the cor-
responding inverted baseline model is used in DDFWI and in
GC-FWI as the initial guess for m in (1). Figure 3 shows the
true time-lapse velocity change used in this study.
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Figure 2: The baseline model inverted from the baseline data
using standard FWI for r = 0.64.

Calculating the confidence map βg(x)
We perform 20 iterations to minimize (1) in a single joint inver-
sion and record the gradients g0(x) and g1(x) for noise levels
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Figure 3: The true time-lapse velocity change investigated in
this study.

r = 0.04 and r = 0.64. The gradients are preconditioned (Shin
et al., 2001) with the purpose of correcting for differences in
illumination. The preconditioned gradient history is then used
to obtain the confidence map βg(x) using (3). We normalize
the confidence maps by dividing each by its maximum value.
The results are compared in Figure 4.

At the locations marked with arrows in Figure 4, we plot the
evolution of the preconditioned gradients using matching col-
ors in Figure 5. We see that the preconditioned gradients g0(x)
and g1(x) have opposite signs and large amplitude at the loca-
tion marked by to the black arrow. The baseline data term and
the monitor data term try to move the intermediate model m,
computed by minimizing (1), in opposite directions. This is
a sign that the baseline and monitor velocities may differ and
thus a true time-lapse change is likely at this location. Equa-
tion 3 for the confidence map therefore assigns a high value of
βg(x) to the location of the black arrow. At the location of the
red arrow the gradients of both data terms are often small and
have the same sign. The low amplitude and the agreement in
sign makes it unlikely that a true time-lapse change is present
at this location, because both data sets agree that the model
fits the data well, and if they try to adjust it at all do so in the
same direction. In the preconditioned gradient evolution plot
of Figure 5 we observe some transient behavior, which is a
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Figure 4: Confidence map βg(x) for GC-FWI for noise levels
r = 0.04 and r = 0.64. The black and red arrows correspond to
the preconditioned gradient evolution curves of the same color
in Figure 5.
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Figure 5: Evolution of the preconditioned gradients of both
data terms of (1) in the inversion, at the locations indicated by
arrows of corresponding color in Figure 4. True time-lapse
regions correspond with gradients of different signs (black)
whereas in regions without timelapse changes the gradients
have the same sign (red).

reason for involving more than one iteration when computing
the confidence map βg(x) in (3).

Comparing GC-FWI and DDFWI
With the confidence map βg(x) we regularize the model dif-
ference in the joint inversion (4). We perform 15 nonlinear
iterations and minimize the objective function using L-BFGS.
We compare the results of GC-FWI at noise level r = 0.64 with
20 nonlinear iterations of DDFWI starting from the initial in-
verted baseline model corresponding to that noise level. Since
the weighing of a regularization term is not trivial we show the
results for three different values of parameter ε , which weights
the model regularization in (4).

We display the results of the comparison between GC-FWI
and DDFWI in Figure 6. We see that the level at which GC-
FWI suppresses noise in the time-lapse estimate depends on
the model regularization weight ε . At the low end of the in-
vestigated values (i.e., ε = 10.0) this noise is only slightly less
than in DDFWI. At higher values of ε the noise in the recov-
ered GC-FWI time-lapse estimates goes down. At the high
end of the investigated values of ε (i.e., ε = 1000.0) we ob-
serve the strongest noise suppression, but we also notice that
the recovered time-lapse change on the rightmost perturbation
is suppressed below the true value of Figure 3.

DISCUSSION

In this study we use identical wavelets and identical source
and receiver locations in the baseline and monitor surveys. In
reality these conditions are hard to satisfy and deviations will
inherently result in artifacts in DDFWI as is documented by
for instance Yang (2014). Instead of subtracting data, GC-FWI
works in the model space by comparing the stacked gradients
of the baseline and monitor survey evaluated at an intermediate
model. It is true that differences in source and receiver loca-
tions in baseline and monitor surveys will change the gradient
contributions of the shots, but the stack of these contributions
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seems quite robust to changes in source location. Tests indi-
cate that if the 19 monitor shots are offset from the baseline
locations by half the shot spacing, the largest shift possible,
the resulting confidence map βg(x) is qualitatively the same.
We have not yet investigated how realistic differences in the
source wavelet would influence GC-FWI.

For the example in this study, the cost of GC-FWI is approxi-
mately 3.5 times that of DDFWI. The cost of βg(x) is 40 stan-
dard FWI iterations because each of the 20 iterations of (1) is
twice the cost of a standard FWI iteration due to the presence
of two data terms. Each of the 15 iterations of the subsequent
joint inversion (4) is also twice as expensive as a standard FWI
iteration for the same reason. This brings the total cost of GC-
FWI to 70 standard FWI iterations compared to the 20 standard
FWI iterations of DDFWI in this example. In this calculation
we do not include the cost of the initial inverted baseline model
that is used in DDFWI and as the initial guess in (1).

Even though GC-FWI significantly reduces the constraints, im-
posed by DDFWI, on the acquisition of the repeat survey, cur-
rent time-lapse datasets have very similar source and receiver
locations. This knowledge can potentially be used to increase
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Figure 6: Comparison of GC-FWI using three different values
of the model-regularization weighting term ε with DDFWI for
noise level r = 0.64. Figure 3 shows the true model time-lapse
change. At low regularization (top) GC-FWI gives results sim-
ilar to those of DDFWI, but as ε is increased GC-FWI sup-
presses spurious changes and results in a more accurate recov-
ery of the time-lapse changes.

the accuracy of the confidence map βg(x). Instead of compar-
ing the stacked gradient of the baseline and the monitor data
term in (1) we could compare the gradient history of each shot
individually. Since the shot and receiver locations are similar
in the baseline and monitor survey, the major difference in the
gradient contribution of a shot will be due to noise and time-
lapse model differences. Generating βg,s(x) from the history
of each shot s and then stacking the result for the final con-
fidence map βg(x) may give improved results. If the source
and receiver locations in the baseline and monitor surveys are
similar and DDFWI is possible, βg(x) could also be used to
regularize the model difference in DDFWI. A significant por-
tion of the noise in the DDFWI time-lapse estimate in Figure
6 could be suppressed in this way.

CONCLUSION

The method introduced in this study performs an initial inver-
sion where the baseline and the monitor data misfit are min-
imized with a single model. By comparing the gradients of
both data terms at each iteration of the inversion we gain in-
sight about the probability of a time-lapse velocity change in
a region. This knowledge is encoded in the confidence map
βg(x), which is then used to regularize the model difference
in a final joint inversion. This method, which we refer to as
GC-FWI, is flexible to differences in acquisition and shows
promising results on synthetic examples.
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