
Pressure solution creep of random packs of spheres
Y. Bernabé1 and B. Evans1

1Earth, Atmospheric and Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge,Massachusetts, USA

Abstract We performed numerical calculations of compaction in aggregates of spherical grains, using
Lehner and Leroy’s (2004, hereinafter LL) constitutive model of pressure solution at grain contacts. That
model is founded on a local definition of the thermodynamic driving force and leads to a fully coupled
formulation of elastic deformation, dissolution, and diffusive transport along the grain boundaries. The initial
geometry of the aggregate was generated by random packing of spheres with a small standard deviation
of the diameters. During the simulations, isostatic loading was applied. The elastic displacements at the
contacts were calculated according to Digby’s (1981) nonlinear contact force model, and deformation by
dissolution was evaluated using the LL formulation. The aggregate strain and porosity were tracked as a
function of time for fixed temperature, applied effective pressure, and grain size. We also monitored values of
the average and standard deviation of total load at each contact, the coordination number for packing,
and the statistics of the contact dimensions. Because the simulations explicitly exclude processes such as
fracturing, plastic flow, and transport owing to surface curvature, they can be used to test the influence of
relative changes in the kinetics of dissolution and diffusion processes caused by contact growth and packing
rearrangements. We found that the simulated strain data could be empirically fitted by two successive power
laws of the form, εx∝ t ξ, where ξ was equal to 1 at very early times, but dropped to as low as 0.3 at longer
times. The apparent sensitivity of strain rate to stress found in the simulations was much lower than predicted
from constitutive laws that assume a single dominant process driven by average macroscopic loads. Likewise,
the apparent activation enthalpy obtained from the simulated data was intermediate between that assumed
for dissolution and diffusion, and, further, tended to decrease with time. These results are similar to the
experimental observations of Visser et al.’s (2012), who used an aggregate geometry and physical conditions
closely resembling the present numerical simulations.

1. Introduction

Geological evidence indicates that pressure solution (PS), i.e., granular flow accommodated by transfer of
matter via an interstitial solvent fluid (usually an aqueous solution), is an important deformation mechanism
in the upper crust [e.g., Rutter, 1983; Gratier, 1987; Tada and Siever, 1989]. Among other things, PS creep is
thought to affect fault gouge healing during the interseismic period [e.g., Blanpied et al., 1992; Hickman and
Evans, 1992; Segall and Rice, 1995; Fitzenz et al., 2007] and to be important in reducing porosity with depth in
sedimentary basins (for discussions, see Renard et al. [2000], Revil [2001], and Ehrenberg et al. [2009]).

Early theoretical analyses of PS [e.g., Weyl, 1959; Paterson, 1973, 1995; Rutter, 1976; Raj, 1982] rest on several
elementary assumptions: (1) a thin, dynamically stable, fluid-saturated interface capable of transmitting
arbitrary tractions from grain to grain must exist at the grain contacts; (2) PS is a compound process
combining four elementary mechanisms, namely, dissolution at stressed grain contacts, diffusive transport in
the fluid saturating the contact interfaces, diffusive/advective transport in the pore space outside the contact
interface, and deposition on the free surface of grains; (3) these mechanisms are acting in series and the
slowest one is therefore rate limiting; and (4) the transfer of matter is thermodynamically forced by the global
difference in chemical potential between the sources and sinks. The earliest models resulted in constitutive
relations, in which strain rates were related linearly to the effective pressure and inversely to grain size raised
to a power between 1 and 3, although later refinements have produced relations with more complicated
systematics [e.g., Spiers et al., 1990; Revil, 1999; Renard et al., 2000; Niemeijer et al., 2002; Dysthe et al., 2002;
Gratier et al., 2009; Taron and Elsworth, 2010]. Nearly all of these elementary assumptions have been the
subject of debate, but the structure of the contact interface has been a topic of particularly great interest.
Proposals include strongly adsorbed water films [e.g., Weyl, 1959; Rutter, 1983; Renard and Ortoleva, 1997], a
dynamic island-channel structure [e.g., Raj, 1982; Lehner, 1990; Paterson, 1995], microcracks [e.g., Gratz, 1991;
den Brok, 1998], or a thin layer of hydrated gel [Revil, 2001].
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More often overlooked, but still important to examine are the assumption of serial coupling of the elementary
mechanisms and the reliance on a macroscopic, averaged chemical potential gradient as the thermodynamic
driving force. Lehner and Bataille [1984/1985], Lehner [1990, 1995], and Lehner and Leroy [2004, hereinafter LL]
have developed a more physically accurate formulation that considers the local jump in chemical potential,
μs(x) � μf (x), where μs and μf refer to the chemical potentials in the solid and fluid, respectively; here, x
denotes the location of a particular infinitesimal volume traversing the solid-fluid interface either at the free
surface of the grains or within the grain contact. Either dissolution or precipitation may occur, depending
on the sign of the chemical potential jump. Concurrently, solid matter is transferred by diffusion from high
to low μs regions, i.e., from the sources to the sinks. In Lehner’s formulation, the chemical potentials μf and μs
are given as functions of space and time:

μf x; tð Þ � μ0 ¼
kT
ρsΩs

ln
γc x; tð Þ
γ0c0

� �
(1)

and

μs x; tð Þ � μ0 ¼
σn x; tð Þ � pf

ρs
þ f x; tð Þ � f 0ð Þ; (2)

where t denotes time, T the temperature, k the Boltzmann constant, ρs the solid density, Ωs the molecular
volume of the solid, σn the normal stress, pf the fluid pressure, c the solute concentration in the saturating
solution, γ the activity coefficient (assumed to be approximately constant so that the ratio γ/γ0 can be
removed from equation (1)), and f the Helmholtz free energy of the solid. The subscript 0 indicates the state
of thermodynamic equilibrium of the solid saturated by a fluid at temperature T and fluid pressure pf.
Considering an individual grain contact and assuming that, at the contact scale, the interface can be
described as a smooth, uniformly thin layer (with unspecified internal structure), it is usually admitted that the
Helmholtz term in equation (2) is negligible compared to the normal stress term (for example, see LL).

In Lehner’s formulation, the instantaneous mass flux of dissolved solid per unit surface area is the following:

J x; tð Þ ¼ ρsKs
Ωs

kT
σn x; tð Þ � pfð Þ � ln

c x; tð Þ
c0

� �� �
; (3)

where Ks is a phenomenological rate coefficient for dissolution at the contact surface. The diffusion of solute
in the contact interface can then be calculated by plugging J(x, t) as a source term in the appropriate diffusion
equation (e.g., quasi-static and two-dimensional if the contact interface is sufficiently thin):

∇2c x; tð Þ ¼ ρsKs

ρf wD
Ωs

kT
σn x; tð Þ � pfð Þ � ln

c x; tð Þ
c0

� �� �
; (4)

where ρf is the fluid density, w the thickness of the contact interface, and D the effective interface diffusion
coefficient. To allow for uncertainty in the boundary diffusion coefficient, we include a retardation factor,
fr< 1, that accounts for the difference between the actual diffusion coefficient along the boundary, D, and
the molecular diffusion coefficient in the pore fluid, Dm; thus, D= fr Dm.

If the normal stress field is known, the flux and continuity equations (3)–(4) can be solved numerically to
determine c(x, t) and J(x, t) [Bernabé and Evans, 2007, hereinafter BE]. From these calculations, one can obtain
the thickness of the layer of solid dissolved at x during an infinitesimal interval of time δt. The amount of
material removed during each time increment determines the change in shape of the contacting grains, from
which the new stress field can be calculated using contact mechanics. Repeating this sequence gives the time
evolution of an individual grain contact. For initially spherical quartz grains in normal contact, BE obtained
decelerating convergence rates associated with contact growth, flattening of the contacting grains, and
transfer of stress from the center of the contact to its periphery. Note that, because the source term on the
right-hand side contains c, equation (4) is inconsistent with the general assumption that interface dissolution
and diffusion are strictly sequential processes. Thus, the conditions, under which the PS kinetics are dominated
by a single rate-limiting mechanism, are greatly reduced (see BE).

Experimental tests of pressure solution can be separated into classes characterized as single contact or
multigrain (aggregate) tests. Single contact tests observe the evolution of individual fluid-saturated, solid-solid
contacts of various geometries (in some cases, in real time under the microscope). For example, Hickman and
Evans [1991, 1992, 1995] and Dysthe et al. [2002, 2003] pressed smooth, spherical, or cylindrical indenters
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against flat substrates. The growth of the contacts and decelerating convergence rates observed in the tests
were qualitatively similar to the BE numerical simulations. When sharp, rectangular, or conical indenters were
used [Tada and Siever, 1986; Gratier, 1993; Gratier et al., 2009; Karcz et al., 2006, 2008], undercutting of the solid
free surface near the highly stressed contact occurred, often in combination with microcracking or plastic
yielding. See Ghoussoub and Leroy [2001] for numerical simulations of undercutting. Using other types of
configurations, de Meer et al. [2002, 2005] performed clever experiments specifically designed to characterize
the thickness and diffusive properties of stressed, fluid-saturated contact interfaces. One recurring observation
is that convergence rates strongly increased when structural irregularities, including scratches, microcracks,
or small-scale roughness of the solid surfaces, were present, when the substrate was a dissimilar mineral, or
when the contact region contained a layer of clay particles.

Individual contact experiments often provide the opportunity for direct observation of the deformation
mechanisms, but their results are not easy to generalize to natural crustal rocks containing a large number of
grains of variable sizes and shapes. Thus, many workers have chosen to measure compaction creep of
monomineralic or polymineralic granular aggregates [e.g., Cox and Paterson, 1991; Spiers et al., 1990; Schutjens,
1991; Rutter and Wanten, 2000; Renard et al., 2001; Niemeijer et al., 2002, 2009; Chester et al., 2004, 2007; Zubtsov
et al., 2004; van Noort et al., 2008; Visser et al., 2012]. However, the aggregate compaction experiments also have
drawbacks. In particular, it is very difficult to prevent the occurrence of other (non-PS) processes, and it may
be difficult to parse the effects of the individual mechanisms. For example, stress-corrosion microcracking
was found to be dominant in experiments measuring compaction of fluid-filled quartz aggregates at relatively
low temperature [Chester et al., 2004, 2007]. Further, the number, sizes, and shapes of the grain contacts as
well as their topology cannot be monitored during aggregate compaction experiments. High levels of grain
heterogeneity (likely enhanced by grain comminution during the cold pressing stages of the experiments, e.g.,
Revil et al. [2006]) and packing disorder are expected to affect PS creep significantly. Calculations suggest
that PS creep rates will decrease owing to stress transfer when the contacts involve grains of different curvature
or when contacts are newly created [Bernabé et al., 2009]. Changes in contact coordination number strongly
affect both the densification rates of metal powders [Arzt, 1982] and the elastic properties of unconsolidated
granular materials [Makse et al., 1999; Dutta et al., 2010].

In this paper, we present numerical calculations of compaction in an aggregate of spherical grainswhere PS occurs
as described by Lehner’smodel. Because the computations include specific information on the grain configuration
at any time, we can evaluate the magnitude of the effect of packing changes on compaction rate. Additionally,
there is no ambiguity about which mechanisms operate, because these, too, are explicitly specified. Thus, we can
use the simulations to assess the effects on the aggregate compaction rates when diffusion and dissolution are
fully coupled at themicroscopic scale andwhen packing geometry changes substantially. The initial configuration
is generated by random packs of spheres, which are subjected to dry isostatic compression using the method
of Cundall and Strack [1979]. We then compute compaction rates and the evolution of sphere configurations
assuming that a solvent fluid fully saturates the pore space and allows PS to occur via Lehner’s model. The
simulations were performed for conditions of constant macroscopic effective pressure and temperature. We
monitored contact coordination number, the contact force statistics, total porosity, and other relevant parameters.

2. Numerical Methods and Procedures
2.1. Numerical Granular Mechanics: Background

Since the pioneering work of Cundall and Strack [1979], numerical methods such as the Distinct Element
Method (DEM) have been frequently used to tackle mechanics problems involving discontinuous solid
bodies. Examples from among many applications include studies to gain insights into the micromechanical
origin of the plastic behavior of soil [Rothenburg and Kruyt, 2004; Gong, 2008], to understand the effect of
a cement phase [Bruno and Nelson, 1991; Holtzman, 2012], to model comminution of gouge during shear
[Mair and Abe, 2008], to simulate hydraulic fracturing [Boutt et al., 2007], or to simulate compaction of plastically
strained aggregates [Martin et al., 2003; Uri et al., 2006; Hartong et al., 2009].

At its core, DEM simply consists in applying Newton’s laws of motion to a set of solid bodies that interact
only through contact forces. The different variations reported in the literature correspond to peripheral
(although important) details such as the shape of the solid grains, the contact interaction laws and/or the
collision rules used when ballistic flight of the solid grains occurs. Here we opted for simplicity and considered
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indestructible, elastic, cohesionless, and frictionless
spheres, which can deform inelastically only by
pressure solution. Assumptions such as elasticity,
absence of cohesion forces, and a spherical grain
shape are commonly made in DEM studies of
unconsolidated granular materials. Although
friction plays an important role in real materials,
there are some valuable advantages in omitting it in
initial studies. Clearly, it is much easier to implement
DEM when friction is absent and when only normal
contact forces are considered. More importantly,
the frictionless case is a useful benchmark. For
example, irreversibility and loading history effects
are known to arise in numerical simulations, despite
the absence of friction or other dissipative
mechanisms. This fact has important consequences
on theoretical models of the mechanics of
unconsolidated granular materials [e.g., Roux, 2000].
The use of frictionless grains was also found to be
a good approximation for plastically deformed
sphere packs, in which rotation of grains tend to be
small [e.g., Martin et al., 2003]. Likewise, omitting
grain fracturing, despite its frequent occurrence in
laboratory experiments, is justified when small
spherical grains are considered and when the
applied confining pressure is limited to an
appropriate range. For example, Karner et al. [2003]
measured a critical pressure of 107 MPa in St. Peter

sand (well-rounded sand with a 150 μm grain diameter) and Makse et al. [2004] did not observe grain fracturing
in glass beads (grain diameter =45 μm) compressed up to 130 MPa. Therefore, for our simulations, we selected
sphere diameters and effective confining pressures within this range (i.e., 2r=80 μm and pc≤ 120 MPa).

In order to calculate the quasi-instantaneous response of dense sphere packs in mechanical equilibrium
to increments of load or displacement, DEM can be efficiently used as an iterative relaxation method
operating in virtual time with arbitrary grain masses and damping terms, adjusted to optimize the
virtual time increment, δτ, used in the calculations. The optimal value will minimize the number of
iterations needed for the disturbed sphere pack to reach a new equilibrium state [e.g., Martin et al.,
2003]. Cundall and Strack’s [1979] guidelines for insuring numerical stability must, of course, be followed
when adjusting δτ. The iterative relaxation DEM appeared to be well suited for our purpose and was
therefore implemented here.

Another important observation is that the results of DEM studies depend strongly on the procedures used to
construct the initial, unstressed sphere packs [Agnolin and Roux, 2008]. Here we are interested in relatively
dense, stiff sphere packs. We also wish to ensure a sufficient level of mechanically stability, i.e., to limit the
frequency and size of the sudden, irreversible grain-rearrangement events that occasionally occur in
compressed sphere packs [Roux, 2000]. A convenient way to achieve this condition is to subject loose sphere
packs to several loading-unloading compression cycles up to stresses higher than the maximum intended
for the numerical simulations (for details, see section 2.4).

2.2. Contact Force-Displacement Rule

One essential ingredient to include in DEM is a contact force-displacement rule. Because PS produces contacts
that have a finite size when unloaded, we used Digby’s [1981] generalization of the Hertzian normal force-
displacement rule (see Elata and Berryman [1996] or Norris and Johnson [1997] for discussions of contact
force laws). A cross section of two unstressed, contacting spheres of radii ri and rj is shown in Figure 1a.
The unstressed contact area has a radius a0 and the distance between the centers at zero load is h0 = hi0 + hj0.

a)

a0

ri
rj

hj0 hi0

b)

a0

uij

initial
state

after
dissolution

ri

rj

Figure 1. Schematic depictions of: (a) the cross section of two
unstressed, contacting spheres of radii ri and rj. The unstressed
interface has a radius a0 and the distance between the centers
at zero load is h0=hi0+hj0. (b) The cross section of the layers of
dissolved solid along the contact interface. The red rectangle
graphically defines the dissolution displacement Δuij and the
radius a0 of the postdissolution interface at zero stress.
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This configuration is equivalent to that of two identical spheres of radius rij with 2/rij= (1/ri+1/rj). According to
Digby [1981], a force,Nij, normal to the contact plane will cause a convergingmotion of the centers ofΔhij, where

Nij ¼ 2E
aijΔhij
2

� aij2 � a20
� �3

2

3rij

" #
(5)

with

2a2ij ¼ a20 þ a40 þ r2ijΔh
2
ij

� 	1
2
: (6)

E is the Young’s modulus of the solid and aij the radius of the stressed contact. Equations (5)–(6) reduce to
the Hertzian force-displacement rule when a0 is equal to zero. Note that if all length parameters are changed
by a factor s, Nij scales as s

2. This scaling relation implies that, for a given external isostatic pressure, pc, the
strains produced in identically structured sphere packs do not depend on grain size. The individual contact
forces inside the sphere packs do, however, vary.

2.3. Approximate Pressure Solution Creep Rule for Individual Contacts

Our previous numerical methods (BE) cannot be implemented for a large number of mechanically coupled
grain contacts. One solution is to seek an analytical expression describing the behavior of a single contact
with a sufficient level of approximation and to incorporate it into DEM (see Harthong et al. [2009] for an
example of this approach in the case of plastically compressed sphere packs). Fortunately, the following
formula derived from LL provides a good approximation of the long-term convergence rates calculated in BE:

dΔuij
dt

¼
2 Ωs

kT
Nij

πa2ij

2
Ks
þ ρs

ρf

aij2

4Z

; (7)

whereΔuij denotes the total thickness of the layers of dissolved solid on both sides of the contact interface,Nij is
here the effective normal force (i.e., accounting for the fluid pressure in the contact interface), and Z= c0w fr Dm

is the interface diffusivity coefficient. Dissolution at the grain contact affects the unstressed contact radius a0 as
depicted in Figure 1b (note that the elastic displacement Δhij and the stressed contact radius aij are not related
through this geometry but obey equations (5)–(6), which take into account the elastic deformation of the
spheres). Using the scaling properties of equations (5)–(6), it is clear that Δuij does not necessarily vary linearly
with the scale factor s. The numerator of the right-hand side of equation (7) is scale independent, whereas
the denominator is the sum of a scale-independent term and another one scaling as s2.

In equation (7), we implicitly assume that the solute concentration in the pore space outside the contact interface
is buffered at the equilibrium concentration c0, perhaps owing to fast advective transport. Thus, precipitation on
the free surface of the spheres is not included in the simulations. As a consequence, contact growth rates were
likely minimized and strain rates maximized with respect to situations in which precipitation is active. Note also
that equation (7) describes circular grain contacts, which do not intersect each other and, thus, applies only to
configurations of relatively low density. Consequently, we stopped the simulations when the porosity of the
compacted sphere packs reached 15%. In our experience, contact intersections are unlikely above this threshold.

2.4. Numerical Procedures
2.4.1. Preparing the Initial, Stress-Free Configuration
We constructed a set of 240 spheres with radii ri assigned according to a uniform distribution (mean radius
r=40 μm, standard deviation σr=2.7 μm). The spheres were placed into a cubic box with equal probability
at all points in the box. The box was initially very large so that mutual interpenetration of the spheres did
not occur. We then shrank the box isotropically, forcing the spheres to contact and to rearrange until the
sides of the box (assumed perfectly rigid) supported pressures in excess of 120 MPa. After that, the box was
reenlarged until the confining pressure returned nearly to zero. By repeating the entire loading-unloading
cycle twice, we significantly reduced the number and magnitude of irreversible grain-rearrangement events,
ensuring a sufficient level of mechanical stability. Lastly, we assigned the contact radii in the final (slightly
stressed) configuration as the initial values of a0 in equations (5)–(6) (Table 1), thus producing an exactly
unstressed, yet rigid sphere pack. Here “rigidity” means that an infinitesimal contraction of the stress-free
sphere pack will produce pervasive nonzero contact forces. Moreover, because new grain contacts form
during compaction at unknown locations, we set an additional rule stating that the initial radius of any newly
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formed grain contact was 0.2 μm. Ten spheres in the stress-free configuration (or 4% of the sphere population)
were still loose, i.e., in contact with less than four other spheres. Loose spheres are very hard to eliminate
completely in numerical simulations and do, in fact, exist in real, unconsolidated, granular materials. Elastic
wave data show that natural sands contain on the order of a few percent of loose grains, called “rattlers”
because of their response to impinging elastic waves (J. D. Berryman, personal communication, 2012).
2.4.2. Dry Isostatic Compaction
In order to simulate dry isostatic compaction, we started from the stress-free configuration described above
and isotropically shrank the box by 0.02 μm increments, letting the spheres rearrange until the contact forces
balanced to within 10�6 N. At each of these steps, we computed the pressures px=Nx l

�2, py=Ny l
�2, and

pz=Nz l
�2, where Nx, Ny, and Nz are the magnitudes of the total contact forces acting on the sides, and l is

the current length of the box. We observed that px, py, and pz constantly approached the mean pressure
pc= (px+ py+ pz)/3 (hereafter called confining pressure) within 4% or less, thus confirming that the simulated
compaction process was nearly isostatic.
2.4.3. Isostatic PS Creep
To simulate isostatic PS creep, we selected conditions of temperature (i.e., 773, 873, or 973°K) and confining
pressure (i.e., 40, 80, or 120 MPa) and set the initial sphere configuration to be the one produced during dry
compaction at the assigned value of pc, where pc now denotes the effective pressure (i.e., taking the fluid pressure
into account). These values are consistent with those chosen for many experiments, but not necessarily for
conditions under which natural deformation by pressure solution is thought to occur. The ultimate goal, of course,
is to develop a constitutive law, which may be scaled over a broad range of conditions. From equation (7), we
calculated the thickness Δuij of the solid layer dissolved at each grain-grain and grain-side contact during a time
increment Δt. The box sides were assumed insoluble. We continued by updating the unstressed contact radii a0
for each contact using the values of Δuij and then calculating the corresponding drop in confining pressure
experienced by the relaxed sphere pack. Finally, we shrank the box isotropically by an amount determined by trial
and error until the original value of pcwas restored. We did not need to consider individual values of px, py, and pz
separately, because they always remained nearly equal. The sequence of computations described above was
repeated as many times as desired, yielding the total linear deformation of the sphere pack (i.e., εx= εy= εz) as a
function of time. We emphasize that the displacements of the box sides correspond to the cumulated effect of all
the individual dissolution and “elastic” displacements, Δuij and Δhij. In consequence, εx can be viewed as the sum
εdis + εel of a dissolution and an elastic strain term, although εdis and εel cannot be separated in practice.

In order to save CPU time we progressively increased Δt from about 1000s at early simulated times to 109s at
late times (corresponding to maximum Δuij values at individual contacts of 0.0001 to 0.05 μm, respectively).
Relevant geometrical, topological, and mechanical parameters including porosity, contact radius, coordination
number, and contact force distribution were monitored during both dry compaction and PS creep simulations.
We restricted this study to simulated deformation of quartz aggregates, using the following temperature-
dependent values of Ks, c0, and Dm (see references in LL and BE):

Ks ¼ 2:27� 10� 3:826 þ 0:002028T þ 4158=Tð Þ in m s�1ð Þ;
c0 ¼ 0:055� 10� 0:254 þ 1107:12=Tð Þ;

Dm ¼ 9� 10�7 exp �15000=8:31036Tð Þ in m2 s�1ð Þ:

Table 1. Dry Isostatic Compaction Characteristics: Confining Pressure pc (MPa), Porosity ϕ, Total Number of Contacts nc,
Mean Coordination Number zc, Mean Radius agrain and aside (μm) of Stressed Grain-Grain and Grain-Side Contacts,
Respectively, Mean Contact Force N, and Standard Deviation σN (N)a

Characteristics Values

pc 0 40 80 120
ϕ 0.434 0.409 0.395 0.383
nc 716 838 880 904
zc 5.2 (0.3) 6.2 (0.2) 6.6 (0.2) 6.8 (0.2)
agrain 1.3 (0.3) 2.3 (0.3) 2.5 (0.4) 2.7 (0.4)
aside 2.3 (0.8) 7.6 (2.2) 9.4 (2.6) 10.6 (3.0)
N 0 0.23 0.44 0.63
σN 0 0.18 0.34 0.48

aUncertainties are given in parentheses.
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The interface thickness wwas assumed equal to
10�8 m, and we simulated conditions of fast and
slow diffusion by considering two values of the
diffusion retardation factor fr, namely 1 and 10�3,
corresponding to the interface diffusivity
coefficient Z on the order of 10�18 and 10�21

m3 s�1, respectively.

The scaling properties of equations (5)–(6)
provide a simple way to investigate the effect
of grain size on PS creep. Indeed, any of the
sphere configurations generated during the dry
isostatic compaction stage can be geometrically
scaled by an arbitrary factor s without changing
the confining pressure externally applied to it.
PS creep of the scaled sphere packs can then
be simulated with the procedures described
above using properly scaled parameters. Note,
however, that we kept the diffusivity coefficient
Z constant and thus did not scale the interface
thickness w.

2.4.4. One-Dimensional Simulations
We performed additional, one-dimensional (1-D) PS creep simulations, in which the number of contacts did
not change. Specifically, we placed 10 identical spheres of radius 40 μmwith contacts lying on a straight line
(the x direction). The end spheres were in contact with two side planes perpendicular to x. The relative
positions of the spheres were such that the initial values of a0 were equal to the averages of those obtained in
the three-dimensional (3-D) simulations for the grain-grain and grain-side contact (Table 1). We then applied
the same numerical methods as before, except that only displacements in the x direction were allowed.
Complete immersion of the spheres in the solvent fluid was, of course, assumed but, because free surface
precipitation was excluded, the amount of fluid surrounding the spheres did not have to be specified. Equal
and opposite contact forces were applied to the end spheres in two different ways: (a) constant side forces,
Nx=4r2px, simulating oedometric compression (i.e., uniaxial compression with no lateral deformation,
εy= εz= 0), where px denotes the effective axial stress, and (b) side forces decreasing with increasing linear
deformation, Nx=4r

2(1� εx
2)pc, corresponding to changes in lateral dimensions consistent with εx= εy= εz and,

therefore, simulating isostatic compression with unchanging packing geometry.

3. Results
3.1. Dry Compaction

Simulating dry compaction simulation was not our main focus and a detailed discussion of that process
is beyond the scope of this paper. But, describing the geometry of packing and the stresses within the
aggregate was an obligatory initial step, necessary for subsequent simulation of PS creep. To test the
simulations against experiments, we compared the simulated porosity reduction with increasing confining
pressure to that of compacted dry sand and glass bead packs [Domenico, 1977; Makse et al., 2004]. Although
the calculated sphere pack had an unstressed porosity ϕ0 of 0.434, which was larger than the experimental
packs, the curves of normalized porosity ϕ/ϕ0 versus pc compare well (Figure 2). The geometry and topology
of the simulated grain contact network changed significantly during dry compaction, even though the
decrease in porosity was only a few percent. The total number of contacts nc and the mean coordination
number zc grew by about a third when pc increased from 0 to 120 MPa (Table 1). The mean radius of the
grain-grain contacts, agrain, was significantly lower than that for grain-side contacts, aside, and the difference
between the two progressively increased with stress: agrain and aside grew by factors of about 2 and 5,
respectively. As expected, increasing pc produced a linear increase of the mean contact force, N. There was
no diminution, however, of the heterogeneity in contact forces, as evidenced by an increasing standard
deviation, σN (Table 1).

Figure 2. Plot of the reduction in normalized porosity ϕ/ϕ0 with
increasing confining pressure pc (red line). The simulated curve
agrees well with Domenico’s [1977] experimental data on com-
pacted dry sand (purple dots) and glass beads (blue squares).
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3.2. Pressure Solution Creep

Figure 3 shows the calculated (isostatic) strain in the sphere pack, εx= εy= εz, as a function of time for five
combinations of temperatures and confining pressures when interface diffusion was fast (i.e., fr= 1). In all
cases, the creep curves were nonlinear and regularly decelerated with time. Strain rates generally increased
with increasing T or pc (Figure 3a). One-dimensional simulations yielded curves with roughly similar shape,
but slightly faster strain rates than those in 3-D (Figure 4a). When the simulated data are plotted in log-log
scale (Figure 3b), two successive power law (εx∝ tξ) regimes are evident: at early simulated times, i.e.,
t< 10 to 20 years, εx varied linearly with t (ξ =1), but at later times, creep rates decreased, and a second
power law dependence with ξ < 1 emerged at t> 100 to 200 years. These power laws, although not exact,
can be used as approximate descriptions for behavior at early and late times. The 1-D simulations also
presented similar early and late power law regimes, indicating that this behavior was not caused by
changes in packing but resulted from the LL kinetics at individual contacts (equation (7)). Noting that

εx∝ tξ implies dεx/dt∝ t� α and dεx=dt∝ ε�β
x , with α= 1 � ξ and β = (1 � ξ)/ξ , we can assess the accuracy

of the approximate power law description by checking the relationships of the exponents α and β to ξ at a
given time. The early-time linear regime was remarkably well delineated in all cases. For the late-time
regimes, the exponents ξ, α, and β satisfactorily verified the mutual relationships mentioned above for

a) b)

isostatic PS creep
          fr = 1

x x3D

Figure 3. Plots of strain, εx= εy= εz, versus time for five simulated 3-D isostatic compressions of the sphere pack in fast dif-
fusion conditions (fr=1). The color of each curve corresponds to the values of temperature and confining pressure indi-
cated in the inset. The curves are represented in (a) linear and (b) log-log scales.

a) b)

x

isostatic PS creep

  3D simulations

Figure 4. Examples of curves of simulated (a) strain and (b) porosity versus time for fast and slow interface diffusion (fr=1,
red and orange lines, fr=0.001, blue lines) and for 3-D isostatic (red and dark blue lines), 1-D isostatic (solid orange and light
blue lines), and 1-D oedometric compressions (dotted orange and light blue lines). These simulations were performed
using a temperature of 873°K and an effective pressure of 80 MPa.
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the 1-D oedometric simulations, while a
somewhat poorer accord was observed for the
1-D and 3-D isostatic simulations. Although
variations occurred, ξ measured at later times
was rather weakly dependent on temperature
and pressure as demonstrated by the parallelism
of the εx(t) creep curves in Figure 3b. Simulations
performed for fast and slow interface diffusion
(i.e., fr=1 and 0.001, respectively) yielded similar
εx(t) and ϕ(t) creep curves, albeit stretched over
different intervals of time (Figure 4). PS creep
rates decreased significantly with increasing
grain size and the transition from early- to
late-time regimes was delayed, but there was
no visible change in the exponent α (Figure 5).

Significant changes in grain packing occurred
during the simulations. In particular, the mean
coordination number zc increased strongly
with increasing time and decreasing porosity
(Figure 6). The relationship between zc and ϕ
(Figure 6) seems to be quite general. It was
essentially independent of pressure and
temperature and, more generally, held in
conditions of both fast and slow interface
diffusion and for other realizations of sphere
packs with slightly different initial porosity and
contact radius distribution. The packing changes
were accompanied by a 50% reduction of the
mean contact force N (Figure 7a), nearly twice as
much as the 30% drop in externally applied
force needed tomaintain a constant pc on a 15%
isostatically compacted sphere pack. We also
observed a considerable decrease of the
standard deviation of the contact forces σN
(Figure 7b), implying an increasingly uniform
distribution of contact forces. The increased
uniformity of contact force was not, however,
accompanied by a similar homogenization of
the contact sizes. In fact, the grain-side contacts
grew more during PS creep than their grain-
grain counterparts, thus increasing the contrast
between the two contact families.

4. Discussion
4.1. Comparison of Simulations With
Previous Constitutive Relations

Early constitutive models of pressure solution
[e.g., Weyl, 1959; Elliot, 1973; Paterson, 1973;
Rutter, 1976; Raj, 1982; Gratz, 1991] were
constructed in a form inspired by the classic
grain boundary diffusion (or Coble) creep
model. Later extensions considered the effect

isostatic PS creep

  3D simulations

Figure 5. Examples of curves of simulated strain rate versus
time for identically structured sphere packs, scaled to three
values of the mean grain radius (blue, 80 μm, black, 40 μm, and
red, 20 μm). These 3-D simulations were performed using a
temperature of 873°K, an effective pressure of 80 MPa and a
diffusion retardation factor fr = 1.

Figure 6. Examples of curves of the mean contact coordination
number zc versus porosity. These 3-D simulations were per-
formed using a diffusion retardation factor fr = 1 and values of
temperature and effective pressure indicated in the inset. By
and large, the five curves are tightly superposed, suggesting the
existence of a single, general relationship between zc and ϕ. For
comparison, we plotted values of the mean contact coordina-
tion number experimentally measured in plastically deformed
aggregates (black squares, bronze powder [Fischmeister et al.,
1978]; blue diamonds, play-dough putty spheres [Uri et al., 2006]).
The results of Rampage numerical simulations [Uri et al., 2006] are
also represented (purple dots).
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of dissolution at the contact interface on the creep kinetics [e.g., Schutjens, 1991; Paterson, 1995]. When a single
mechanism is rate limiting, the constitutive laws often take the form:

dεx
dt

¼ G
Ωs

kT
exp

�H
RT

� �
pc

n

dm
; (8)

where G is a constant, H the effective PS activation enthalpy, R the gas constant (R= k/NA, where NA is
Avogadro’s number), d= 2r the grain size, n the stress exponent (usually assumed equal to one), andm=1 or
3 depending on whether the rate-limiting step is dissolution or diffusion, respectively. However, strain rates in
aggregate compaction experiments are normally observed to decrease with decreasing porosity and cannot
be described by equation (8). Thus, modifications have been proposed to account for changes of packing
geometry and contact area, the most common being the inclusion of a separable exponential factor
containing porosity [e.g., Rutter and Wanten, 2000; Niemeijer et al., 2002; Fitzenz et al., 2007]:

dεx
dt

¼ G
Ωs

kT
exp

�H
RT

� �
pc

n

dm
exp qϕð Þ; (9)

where q is an empirically determined constant and porosity ϕ is a decreasing function of time. When
pressure, temperature, and grain size are fixed, equation (9) predicts linear dependence of log(dεx/dt) onϕ. In
addition, because the principal strain rate is �1/3 the volumetric strain rate, the porosity at time t is the
following [Fitzenz et al., 2007, equation (2)]:

ϕ ¼ �1
q

log Kqt þ exp �qϕ0ð Þ½ � (10)

and

3
dεx
dt

¼ K
Kqt þ exp �qϕ0ð Þ ; (11)

where ϕ0 is the starting porosity and K ¼ 3G Ωs
kT exp �H

RT

� � pc
n

dm . However, the simulated data did not show linear
relationships of log(dεx/dt) with porosity nor of the inverse strain rate with time (Figures 8b–8c). Therefore,
the simulations do not support equation (9). Instead, two successive power law regimes, dεx/dt∝ t� α, can be
identified (Figures 5 and 8a). The first is at early times, where dεx/dt∝ t0; and the second at late times, where α
is approximately 0.6–0.7 and creep rates decelerate. The late-time exponent ξ relating strain to time (or its
counterparts α and β) had a moderate range of variation from one simulation geometry to another, the lowest
values (ξ ≈0.3) being obtained for the 3-D simulations and the largest (ξ ≈0.6) for the 1-D oedometric ones (Table 2).

4.2. Apparent Stress Exponent, Activation Enthalpy, and Grain-Size Exponent

Workers often apply the aggregate creep law (equation (9)) to experimental data to calculate apparent values
of the stress exponent, activation enthalpy, and grain-size exponent. The empirical values obtained are then

a) b)

Figure 7. Examples of curves of (a) the mean contact force N and (b) the standard deviation of the contact forces σN
normalized to the initial mean contact force N0. These 3-D simulations were performed using a diffusion retardation
factor fr=1 and values of temperature and effective pressure indicated in the inset.
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compared to those independently identified with diffusion or dissolution kinetics. Here we use the simulations
as experimental data to be analyzed using the aggregate flow law. Following Visser et al.’s [2012, Figures 6–7]
graphic approach, we plotted the simulated strain rates (measured at constant strain levels) versus pc, 1/T, or
r and interpreted them in terms of apparent values of n, H, and m (Figures 9 and 10). The results can be
summarized as follows:

1. Stress exponent
In all simulations, the effective stress exponents increased with increasing strain (or time) assuming values
about 0.3 at strains less than 1%, to about 1 for strains approaching 15% (Figure 9a). The stress exponents

a) b)

c)

Figure 8. Examples of curves of (a) strain rate versus time, (b) strain rate versus porosity, and (c) inverse strain rate versus time
demonstrating that the simulations based on LL kinetics were not well described by the generic aggregate constitutive laws
expressed in equation (9) but instead obeyed the empirical, double power law constitutive behavior discussed in the text.
These 3-D simulations were performed using a diffusion retardation factor fr=1 and values of temperature and effective
pressure indicated in the inset.

Table 2. Summary of the Constitutive Parameters for the Various 3-D and 1-D Simulations: The Late-Time Exponent ξ, the
Early- and Late-Time Activation Enthalpies H0 and H∞ (kJ mol�1), and the Stress Exponents n0 and n∞

a

One-Dimensional

Three-Dimensional Isostatic Oedometric

fr 1 0.001 1 0.001 1 0.001
ξ 0.43 (0.05) 0.34 (0.03) 0.50 (0.03) 0.41 (0.04) 0.56 (0.01) 0.41 (0.01)
H0 43 42 43 42 43 42
n0 0.28 0.28 0.33 0.32 0.34 0.34
H∞ 19 11 22 13 24 13
n∞ 0.39 0.29 0.48 0.38 0.50 0.38

aUncertainties are given in parentheses.

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011036

BERNABÉ AND EVANS ©2014. The Authors. 4212



were slightly greater in fast diffusion conditions and in 1-D simulations (Figure 10). These generally low stress
exponents differ from the classic aggregate models, which predict n= 1 [e.g., Rutter, 1976; Paterson, 1995],
and from those found in many experimental studies, which often are much larger than unity. For example,
Niemeijer et al. [2002] found stress exponents of 3 to 3.6 during compaction of quartz sand packs at
temperatures of 400–600°C and lithostatic effective pressures of 50–150MPa (a slightly lower value of 2.5 was
obtained by Fitzenz et al. [2007], who used a more accurate Bayesian inference method to reinterpret
Niemeijer et al.’s data).In contrast, low apparent stress exponents were observed in experiments by Visser

et al. [2012], who compacted sodium nitrate sphere
packs at low loads. The conditions in these tests
were almost identical to that assumed in the
simulations. The grains were nearly spherical in
shape. Because effective stresses were lower than
5 MPa, fracture and grain cracking were suppressed
even during cold pressing, and because the
dissolution and diffusion kinetics of the highly
soluble nitrate were very rapid, other strain
mechanisms were likely absent. In order to deter-
mine apparent values of n, we used data from
Visser et al.’s Figure 6, excluding data correspond-
ing to stresses lower than 0.016 MPa. According to
the authors, strain rates in those conditions may
have been influenced by smoothing owing to
surface tension, an effect omitted in the simula-
tions. The apparent stress exponents in the nitrate
experiments increased from 0.24 at low strains
to values between 1 and 2 at large strains. The
simulations agree most closely with experiments
where grain sizes were near 2r = 80 μm, as in the
simulations. The highest and most incompatible
values of n occurred for the finer-grained materials
(see Figure 10, where the experimental data were
translated to the left to aid the comparison to
the numerical results).

a) b)

Figure 9. Examples of plots of simulated strain rates (measured at constant strain levels as indicated by the various colors
and values given in the inset) versus (a) effective pressure pc and (b) inverse temperature 1/T. From these diagrams, we
calculated the apparent values of the stress exponent n and activation enthalpy H (a few values are indicated near the
data points in corresponding colors). The particular 3-D simulations included here were performed in conditions of slow
interface diffusion (fr=0.001).

0

0.5

1

1.5

2

0 0.1 0.2 0.3

simulations (fr = 1)
3D
1D

Visser et al. [2012]
104 µm
39 µm
15 µm

8 µm

Figure 10. Comparison of simulated (red and orange lines)
and experimentally measured (black, blue, and purple sym-
bols) values of the apparent stress exponent n for various
strain levels. The particular simulations included here were
performed using a diffusion retardation factor fr=1 and a
temperature of 873°K. The experimental data were obtained
from Visser et al.’s [2012] Figure 6. The values of the experi-
mental stress exponent were translated to the left to help
comparison with the simulated values.

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011036

BERNABÉ AND EVANS ©2014. The Authors. 4213



2. Activation enthalpy
Values for the apparent activation enthalpy H were
essentially the same in 1-D and 3-D simulations
with equivalent process kinetics. But, in all cases,
H was strongly affected by the interface diffusion
coefficient. When diffusionwas slow (i.e., fr=0.001),
H regularly decreasedwith increasing strain (or time)
from 41.5 to 31 kJ mol�1. The rate of transition
from high to low values was also affected by fr: H
remained essentially constant near 43.3 kJ mol�1

in fast diffusion conditions (fr=1), while additional
1-D simulations using the extremely low value
fr = 10�5 showed that H reached a minimum
value of about 29 kJ mol�1 within less than 0.1%
strain and stayed constant afterward. A similar
decrease of the apparent activation enthalpy
with time was also inferred from the single
asperity simulations of BE, who attributed it to
contact growth with time. Overall, the apparent
values of H tended to be lower than expected. At
early times, when dissolution was most likely to be
dominant, H was significantly lower than the
dissolution activation enthalpy Hdis≈ 72 kJ mol�1.
At late times, when diffusion kinetics are probably
most important, we measured H’s slightly lower

than the effective activation enthalpy HZ≈ 36 kJ mol�1 of the interface diffusivity coefficient Z. These
results (especially for early times) may be partially explained by the fact that only the total strain rate
dεx/dt=dεdis/dt+dεel/dt (not dεdis/dt alone) are retrieved in the analysis [see Bernabé et al., 2009].

3. Grain-size exponent
As was true for activation enthalpy, the grain-size exponent,m, determined from the simulations, was primarily
controlled by the diffusion retardation factor fr. For fast diffusion (fr=1), we found m≈1 independent of time
(or strain) whereas, when diffusion was slow (fr=0.001), m progressively increased from 1.3 to about 3 with
increasing strain (Figure 11). Unlike the stress systematics, the influence of grain size is in general accord with
the aggregate constitutive law. For comparison with experiments, we examined the curves of strain rate versus
grain diameter presented in Visser et al.’s [2012] Figure 7. In the finest-grainedmaterials, the experimental strain
rates increased with d, reaching a maximum near d≈20 μm, and then monotonically decreased as predicted
by the classic models. The authors attribute the positively inclined portions of the dεx/dt versus d curves to
the surface tension effect mentioned earlier, leading to deceleration of creep (and possibly arrest as required
by the viscoplastic model of Revil [1999, 2001]). Accordingly, we thus estimatedm from the strain rate data of
Figure 7 corresponding to d> 20 μm. Since the data sets represented in Visser et al.’s Figures 6 and 7 are not
identical, we also determinedm from cross plotting the data of Figure 6 for all grain sizes, including 8 and 15μm.
Values of m varying from 1.5 to 4.1 (with an average of 2.8 and a standard deviation of 0.6) were obtained.

4.3. Evolution of the Sphere Pack Structure

The simulations revealed a relationship between themean contact coordination number, zc, and porosity,ϕ, that
was generally valid, except perhaps at the highest porosities (Figure 6). This relationship agreed well with data
collected during plastic compaction of packs of bronze powder [Fischmeister et al., 1978] and play-dough spheres
[Uri et al., 2006] (Figure 6). Uri et al. [2006] also numerically simulated sphere packs elastically compressed by
gravity. Their results for sphere packs with porosities near 0.4 were similar to that in our calculations of dry
compaction. Hence, this general insensitivity to differences in deformation mechanisms suggests that the ϕ-zc
relationship of Figure 6 may be characteristic of a broad class of partially consolidated porous media.

As shown in Figure 7a, the mean contact forces decrease quickly as the material compacts. There are two
transient effects that might be responsible: one is the increase in coordination number with decreasing

1

2

3

4

0 0.1 0.2 0.3

3D simulations (fr = 1)

Visser et al. [2012]
from Figure 6
from Figure 7

Figure 11. Comparison of simulated (red line) and experi-
mentally measured (black and blue dots) values of the
apparent grain-size exponent m for various strain levels.
The particular 3-D simulations included here were performed
using a diffusion retardation factor fr = 1, an effective
pressure of 80 MPa and a temperature of 873°K. The
experimental data were obtained from Visser et al.’s [2012]
Figures 6 and 7. The experimental grain size exponents had
an average of 2.8 and a standard deviation of 0.6.
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porosity, the second is the transient associated with changing kinetics at the grain contacts [BE]. The relative
importance of the two transients can be gauged by comparing the results of the 3-D and 1-D simulations
(Figure 4a); only the former simulations have changes in packing. We note that creep rates were slowest for
3-D isostatic compaction and fastest for 1-D oedometric compaction. In fast diffusion conditions (i.e., fr= 1),
strains= 14%were reached in 4640, 4070, and 3330 years in the 3-D isostatic, 1-D isostatic, and 1-D oedometric
simulations, respectively; 30,200, 25,400, and 20,200 years were necessary for the same geometries when
diffusion was slow (i.e., fr= 0.001). In the 1-D oedometric simulations, the strain rate deceleration was
exclusively caused by the decline in contact stress associated with growth of the contact. An additional strain
rate deceleration of about 15 to 20% occurred in the 1-D isostatic simulations owing to the decrease in
externally applied contact force. Finally, in the 3-D simulations, additional changes in the packing geometry
produced a further deceleration of around 10 to 15%. The relatively small deceleration caused by changes in
zc can be attributed to the low sensitivity of creep rate to the contact load, as evidenced by the low apparent
stress exponents discussed above. If the stress exponents were higher (as often observed in aggregate
compaction experiments), the relative deceleration caused by packing changes will likely be much greater.

4.4. Empirical Power Law Dependence of Strain Rate and Strain on Time

Because there is no analytical formulation of the aggregate behavior that incorporates the LL kinetics at the
grain contacts, we sought an empirical description. As noted above and shown in Figures 3, 5, and 8, the
creep behavior can be approximated by an empirical double power law relation between time and either
strain or strain rate. Power laws of the form εx∝ tξ with ξ ≅ 0.3–0.4 have actually been observed at late times
in the experiments of Renard et al. [2001] (oedometric compaction of salt/clay mixtures; ξ =0.4) and Dysthe
et al. [2003] (single cylindrical indenter; ξ = 1/3). Most interesting is the agreement with Visser et al.’s [2012]
experiments because the aggregate geometry most closely resembles the present numerical simulations.
Visser et al.’s results, when plotted as curves of strain rate versus strain (volumetric strain and axial strain are

equal in oedometric systems), visibly displayed two successive power laws dεx=dt∝ ε�β
x (see Visser et al.’s

Figure 5b). Although experimental and simulation results agree very well qualitatively, there are large
quantitative differences in rates, possibly due to the different minerals used (e.g., NaNO3 is much more
soluble and deformable than quartz). In particular, the transition between the early- and late-time regimes
occurred at a much greater strains in Visser et al.’s experiments than in the simulations (εx≈ 10% instead of
0.1%) and the exponent β took much greater values (β ≈ 1 at early times instead of 0 and β ≈ 10 at late times
instead of between 1 and 2).

4.5. Interpretation of Aggregate Compaction Based on the LL Kinetics

Because the double power law behavior observed in both the 1-D and 3-D simulations was similar, we infer
that the changes in packing geometry and distribution of contact forces are not dominantly responsible
for the relation between time and strain. Thus, the apparent values of n, H, andmmeasured in the aggregate
aremost likely influenced by transients associated with the LL kinetics (equation (7)). It is therefore interesting
to examine the properties of equation (7) in detail.

1. Stress exponent
At early times, the initial contact radius a0 was very small. By plugging a0≈ 0 in equations (5)–(6), we find
that the stressed contact radius aij is proportional to Nij

1/3. Since we can estimate the effective pressure
applied on a single contact as pc≈Nij/4rij

2, equation (7) can be rewritten in the following form:

dεdis=dt∝ duij=dt ¼
λ1

pc
p2=3c

λ2 þ λ3p
2=3
c

(12)

where λ1, λ2, and λ3 are positive parameters insensitive to the applied contact pressure. Equation (12) implies
that�1/3≤n≤1/3. An apparent stress exponent n≈1/3 should be expectedwhen PS is dissolution controlled
(i.e., λ2>> λ3pc

2/3) whereas diffusion-controlled should be indicated bymuch lower (possibly negative) values
of n. At late times, owing to contact growth (i.e., large a0), aij≈a0 becomes independent of pc and the pc

2/3

actors in equation (12) disappear, i.e., dεdis/dt∝ λ1pc/(λ2 + λ3), implying that n approaches unity. Thus,
equation (7) explains the observed increase of n from about 1/3 at very low strains to 1 at large strains (Figure 10).
We note that Visser et al.’s [2012] experiments display a similar behavior, except that the strains are much
larger in general and stress exponents between 1 and 2 occurred at large strains for the fine-grain materials.
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Extra processes not included in the simulations are required to explain 2≤n≤ 1. One possibility is a pressure
dependence of the effective interface thickness w, which would yield dεdis/dt∝ λ1pc/(λ2 + λ3/pc) in the large
strain limit (i.e., at late times) and n≈2when λ3 dominates λ2 (in other words, when PS is diffusion controlled).

2. Activation enthalpy
The combined temperature dependence of the parameters in equation (7) can rewritten as follows:

dεdis=dt∝
κ1
T

κ2
exp �Hdis=RTð Þ þ κ3

exp �HZ=RTð Þ
(13)

where κ1, κ2, and κ3 are quantities that do not depend on temperature. The creep rate in this model,
clearly, does not obey a simple Arrhenius relation, and thus, the apparent activation enthalpy, Happ may
take somewhat unexpected values. However, Happ should approach Hdis or HZ, if one of term in the
denominator is negligible with respect to the other. Because κ3 contains aij, its magnitude increases with
time while κ2 remains constant. Then Happ should evolve toward HZ with increasing time, as is, in fact,
observed in the slow diffusion simulations. This trend should also apply to fast diffusion simulations, but
we did not observe it, perhaps because of limits in the duration of the simulations.

3. Grain-size exponent
Owing to the scaling properties previously discussed in section 2.3, equation (7) can be recast as follows:

dεdis=dt∝
1
s
duij=dt ¼ γ1

γ2sþ γ3s3
(14)

where γ1, γ2, and γ3 are parameters independent of grain scale. Since it is equivalent to express the scale
dependence of dεdis/dt in terms of the scaling factor s or the grain size 2r, equation (14) recovers a feature
of the classic PS models, namely, that the grain-size exponent m should lie between 1 and 3, with the
bounds 1 and 3 corresponding to dissolution- and diffusion-controlled PS creep, respectively. As in the
previous paragraph, γ3 increases with time while γ2 remains constant. As a consequence,mmust vary with
time from 1 to 3, as was observed in the slow diffusion simulations. The values ofm determined from Visser
et al.’s [2012] data tend to cluster near 3 and, therefore, indicate a dominant effect of interface diffusion, a
reasonable conclusion given the high solubility of NaNO3.

5. Conclusion

The simulations reported here used a constitutive model formulated by LL to describe pressure solution
along grain/grain contacts. The LL model is founded on a local definition of the thermodynamic driving
force and leads to a fully coupled formulation of elastic deformation, dissolution, and diffusive transport
along the grain boundaries. Thus, we can use the simulations to assess the effects on the aggregate
compaction rates when diffusion and dissolution are fully coupled at the microscopic scale and when
packing geometry changes substantially.

Our main result is that the simulated strain rates were not well described by the generic aggregate constitutive
laws expressed in equation (9). Instead, we observed the following that:

1. The simulated strain data could be empirically fitted by two successive power laws of the form, εx∝ tξ,
where ξ was equal to 1 at very early times, but dropped to as low as 0.3 at longer times;

2. The apparent sensitivity of strain rate to stress found in the simulations was very low (apparent stress
exponent significantly lower than 1);

3. The apparent activation enthalpy obtained from the simulated data was intermediate between that
assumed for dissolution and diffusion and further tended to decrease with time;

4. The influence of grain size on strain rates was in general accord with the generic aggregate constitutive
law, although the apparent grain-size exponent was time dependent in some conditions.

5. We observed large changes in packing during the simulations.

These characteristics are a consequence of the LL kinetics embodied in equation (7). Remarkably, similar features
can also be observed in the experiments of Visser et al. [2012], the only ones to our knowledge, which were run
using an aggregate geometry and physical conditions closely resembling the present numerical simulations.
The increase in coordination number with decreasing porosity agreed well with the experimental results of
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Fischmeister et al. [1978] and Uri et al. [2006] on plastically deformed aggregates. The variations in packing,
however, had a limited effect on the simulated strain rates. This weak sensitivity of strain rates to packing was
caused by the weak sensitivity to stress associated with equation (7). Much greater effects may be expected in
situations when additional, strongly stress-dependent mechanisms are involved at the grain contacts.
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