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Geoazur, Université de Nice/CNRS/IRD, F-06560 Sophia Antipolis, France. E-mail: sergey.voronin@colorado.edu

Accepted 2014 June 23. Received 2014 June 19; in original form 2014 May 1

S U M M A R Y
We present a new approach to reduce a sparse, linear system of equations associated with
tomographic inverse problems. We begin by making a modification to the commonly used
compressed sparse-row format, whereby our format is tailored to the sparse structure of
finite-frequency (volume) sensitivity kernels in seismic tomography. Next, we cluster the
sparse matrix rows to divide a large matrix into smaller subsets representing ray paths that are
geographically close. Singular value decomposition of each subset allows us to project the data
onto a subspace associated with the largest eigenvalues of the subset. After projection we reject
those data that have a signal-to-noise ratio (SNR) below a chosen threshold. Clustering in this
way assures that the sparse nature of the system is minimally affected by the projection.
Moreover, our approach allows for a precise estimation of the noise affecting the data while
also giving us the ability to identify outliers. We illustrate the method by reducing large
matrices computed for global tomographic systems with cross-correlation body wave delays,
as well as with surface wave phase velocity anomalies. For a massive matrix computed for 3.7
million Rayleigh wave phase velocity measurements, imposing a threshold of 1 for the SNR, we
condensed the matrix size from 1103 to 63 Gbyte. For a global data set of multiple-frequency
P wave delays from 60 well-distributed deep earthquakes we obtain a reduction to 5.9 per cent.
This type of reduction allows one to avoid loss of information due to underparametrizing
models. Alternatively, if data have to be rejected to fit the system into computer memory, it
assures that the most important data are preserved.

Key words: Inverse theory; Body waves; Surface waves and free oscillations; Computational
seismology.

1 I N T RO D U C T I O N

Gilbert (1971) wrote an important paper addressing the need to
condense the size of linear geophysical inverse problems so as to be
able to solve them with the computing power available at the time.
The IBM S/360-67, introduced in 1967, had an internal memory
limited to 1 Mbyte. The first personal computer, the Apple II, offered
48 Kbytes in 1977. The IBM PC, introduced in 1981, had a memory
limited to 256 Kbyte. At the time Gilbert’s paper was published, a
megabyte was obviously considered a major storage headache.

However, Moore’s law predicting an exponential growth in the
number of transistors that fit on a single chip caught up with the early
limitations, and the memory capacity of computers doubled roughly
every 18 months. Some of the computations presented in this paper
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were done on a MacBook Pro with 4 Gbyte internal memory, which
is now considered more or less standard, whereas many of us have
access to local clusters with a Terabyte or more of memory. As a
result, Gilbert’s paper was soon apparently obsolete: cited 51 times
in the first ten years after its publication, it was mentioned only four
times since 2000 (data from Web of Knowledge).

One of the big surprises of recent times is the extremely rapid
accumulation of high quality digital seismic data, a development
that has caught up with Moore’s law. Combined with new methods
to analyse these data, such as finite frequency tomography (Dahlen
et al. 2000) and adjoint waveform tomography (Tromp et al. 2005;
Fichtner et al. 2006), this often requires significantly more computer
memory than is readily available.

The adjoint approach circumvents the problem posed by memory
limitations since it computes a gradient on the fly and does a search
in model space to find a minimum in the data misfit rather than in-
verting a linear system, but this makes it labour intensive. Because
the gradient is re-computed at each iteration, adjoint inversions are
thought to be better positioned to handle the strong non-linearity
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of waveform data. Yet in practice the adjoint method is often ap-
plied to delay times measured by cross-correlation over selected
time windows (Maggi et al. 2009; Tape et al. 2009, 2010), rather
than to the waveforms themselves, to reduce non-abrasivelinearity.
Mercerat & Nolet (2012, 2013) show that cross-correlation delays
remain linear over a large range of velocity heterogeneity (up to
10 per cent). Recomputing the gradient at every step then becomes
a unnecessary burden rather than an advantage. If one can avoid
the gradient search altogether, and instead invert the linear system
directly, this could significantly reduce the number of non-linear
iterations needed, or potentially avoid iterating at all, if the problem
is sufficiently linear.

Inverting delay times (or surface wave phase delays) by linear
inversion, as is done in ‘finite-frequency’ tomography, therefore of-
fers a very significant speed-up in computation, though at the cost of
a memory requirement that easily exceeds a few Terabytes and ap-
proaches even the memory capacity of the largest machines. At the
time of writing, the Titan cluster at Oak Ridge, used by Bozdag et al.
(2013) in their pioneering attempts to do global tomography with
the adjoint method, offers 584 Tbyte, but most applications work
on clusters of one, or at best a few Terabytes. It thus is worthwhile
to revisit Gilbert’s ‘ranking and winnowing’ of data to determine if
this leads to the significant reduction of memory needed for modern,
3-D inverse problems.

2 S PA R S E , L I N E A R T O M O G R A P H I C
S Y S T E M S

Earthquakes often occur at (almost) the same location, and seismic
stations remain where they are. As a consequence, tomographic data
can be very redundant, leading to matrices with rows that are highly
dependent. This section explores a method to use this redundancy
to reduce the size of the linear system while retaining the sensitivity
to small scale structure if it is resolvable.

We consider N travel time delays di that are linearly (or quasi-
linearly) dependent on M model parameters mi and that are observed
with errors ei:

Am = d + e. (1)

If a local parametrization is used for m (dividing the model up
in volume elements or ‘voxels’), the system (1) is sparse, that is
most of the elements of the sensitivity matrix A are zero. Typically,
in our applications, the fraction of non-zeros is of the order of a
few per cent. Sparse systems can efficiently and stably be solved
with linear conjugant gradient methods such as LSQR (Paige &
Saunders 1982). To exploit the extra sensitivity of finite-frequency
in tomographic inversions, a fine parameterization of the model
is necessary (Chevrot & Zhao 2007), leading to very large model
dimension M. We use the parameterization described by Charléty
et al. (2013), in which the Earth’s mantle is represented by 3.6
million voxels. Modern applications may also require the inversion
of millions of data, such that N × M > 1012.

The first strategy to reduce the memory needed for a matrix
should focus on the way it is represented in computer memory. For
completely unstructured matrices one needs to specify the column
number with each non-zero element. However, finite-frequency sen-
sitivity kernels are localized in space, and exploiting the fact that
non-zeroes are clustered in each row leads to a savings that may
approach 50 per cent. We describe our modified representation in
the Appendix. A second strategy can be to use wavelets to reduce
the storage requirement for the matrix, the model or both (Chevrot

& Zhao 2007; Simons et al. 2011; Charléty et al. 2013; Voronin
et al. 2014). In this paper, we explore a third strategy based on sin-
gular value decomposition, and combine it with the modified sparse
representation.

In seismic tomography the model usually represents perturbations
with respect to a ‘background’ model, often a spherically averaged
model. The expected value of the mi is therefore assumed to be 0.
We also assume, for derivations below, that data errors as well as
the model perturbations are uncorrelated. Both can be transformed
to diagonalize their covariance matrix if we have prior knowledge
of correlations (see the discussion in Section 5.2). Finally, assume
that all model parameters have the same prior variance σ 2

m and that
all errors in the observations have the same variance σ 2

e , and are on
average zero. These conditions are not essential, and will be relaxed
later, but they simplify the mathematical development:

E[mi ] = 0, E[mi m j ] = δi jσ
2
m, (2)

E[ei ] = 0, E[ei e j ] = δi jσ
2
e , (3)

where E[.] denotes the expected value.

2.1 Summary of SVD

We assume the reader is familiar with singular value decomposition
(SVD; see also Nolet 2008, chapter 14), but recall here briefly some
of the major characteristics of this approach in order to establish a
useful notation. We use the SVD of the N × M matrix A:

A = U�V T ≈ Uk�k V T
k , (4)

where (.)T indicates the transpose, U and V are eigenvector matrices
of AAT and AT A, respectively, with eigenvalues �2 = diag(λ2

i ).
The subscript k on matrix symbols indicates a truncation to k
columns or rows, for example Uk is an N × k matrix with the
k eigenvectors ui , i = 1, ..., k belonging to the largest k singular
values as columns. The two sets of eigenvectors are related by:

AT ui = λivi . (5)

We project the system (1) onto the range of Uk to obtain a consistent
system of equations (if vector y is in the ‘range’ of U it means that
there is a vector x such that U x = y):

U T
k Am = U T

k d + U T
k e . (6)

If k ≤ Min(M, N ) is equal to the rank of the system, the solution
using (6) is the same as the least squares solution obtained from
solving (1). However, we seek a ‘damped’ solution for the model
that is minimally influenced by the errors e. As we show below, the
posteriori covariance matrix of the model is proportional to �−2 .

The wish to suppress error propagations (and also the need to
fit the system in limited computer memory), usually motivates us
to truncate at a level k such as to remove singular values that are
small, but not yet zero. We note that the eigenvectors (columns of
U and V ) are orthonormal, thus U T

k Uk = Ik , and V T
k Vk = Ik even

if k < N, but that a transposed product such as UkU T
k is not equal

to the unit matrix IN unless k = N. We develop the true Earth m
into a part projected onto the first k orthonormal eigenvectors vi

(mk = Vk yk) and a residual:

m = Vk yk + mM−k , (7)

where mM−k is the ‘unresolved’ part of the model not in the range of
Vk , i.e. VkmM−k = 0, and therefore yk = V T

k m. A minimum norm
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solution is obtained by setting mM−k = 0. Similarly, we project the
data onto the set of eigenvectors ui , i = 1, ..., k:

d = Ukτk + rk , (8)

where rk denotes the rest term, the data component not in the range of
Uk , such that τk = U T

k d . Note that this choice reduces the projected
data vector to its component in the range of Uk , which is smaller than
the range of A. If our truncation is too conservative, any unmodelled
components of the observed data d are considered the same way as
errors. However, as we shall show, the reduction to k equations also
enables us to remove data with a low SNR from the system. We
must thus find a suitable compromise in our choice of k. How to do
that is the major topic of the rest of this section.

2.2 Error estimation

The covariance of the data d is related to the covariances of the
model and the measurement errors. Using the fact that m and e have
zero expected value and are uncorrelated (eqs 2 and 3), we find for
the data covariance:

Cov(di , d j ) = E

[∑
k,l

(Aikmk + ei )(A jlml + e j )

]

=
∑
k,l

Aik A jl E[mkml ] + E[ei e j ]

=
∑
k,l

Aik A jlδklσ
2
m + σ 2

e δi j

=
∑

k

Aik A jkσ
2
m + σ 2

e δi j . (9)

Writing σ 2
e I for the error covariance matrix, and σ 2

m I for the prior
model covariance, the total data covariance in matrix notation is:

Cd = ACm AT + σ 2
e I = σ 2

m AAT + σ 2
e I , (10)

and, using the (full) singular value decomposition of A:

Cd = σ 2
mU�V T V �U T + σ 2

e I

= σ 2
mU�2U T + σ 2

e I. (11)

For the covariance of the projected data τk = U T
k d we find with

U T
k U = [Ik, ∅] (i.e. the last N − k columns zero) in a similar

fashion:

Cτ = Cov(U T
k d) = U T

k CdUk

= σ 2
mU T

k U�2U T Uk + U T
k σ 2

e IkUk

= σ 2
m�2

k + σ 2
e Ik . (12)

The variance of the projected data is given by the diagonal of Cτ :

σ 2
τi

= σ 2
mλ2

i + σ 2
e , (13)

which splits the data variance into a ‘signal’ part due to the model
and a ‘noise’ part σ 2

e due to errors in the data. For the signal-to-noise
ratio (SNR) of the ith projected datum we therefore have:

SNRi = σmλi

σe
. (14)

Eqs (12) and (13) tell us that the projected data are uncorrelated,
with a variance σ 2

τ increasing with the eigenvalues and approaching
σ 2

e as the eigenvalue approaches zero. One can thus estimate the
data errors by inspecting the distribution of the projected data as
λi → 0, or fit the complete distribution with optimized values for
σ 2

e and σ 2
m .

Figure 1. Projected data as a function of the eigenvalue for the largest
cluster of surface wave data (see Section 4.1). The solid lines denote ± one
standard deviation in the distribution of τ i as predicted by eq. (13), with
optimal σ 2

e and σ 2
m determined by a simple grid search. The first two data:

τ 1 = −90.5, τ 2 = −121.9, fall outside the plot.

The optimization is done by assuming a normal distribution and
using a grid search for σ 2

e and σ 2
m such that close to 68 per cent

of the data falls outside ±σ τ . Fig. 1 shows an example for surface
wave data that we shall study in Section 4.1. The result that the
projected data have the same standard error σ e as the original data
was already found by Gilbert (1971), but the derivation given here
is much simplified by starting from a scaled system with uniform
data error variance σ 2

e and prior model uncertainty or variance σ 2
m .

2.3 Winnowing small eigenvalues

The data misfit χ 2
k is found by multiplying the solution mk with the

original matrix:

χ 2
k ≡ |Amk − d|2

σ 2
e

= |rk |2
σ 2

e

, (15)

where because of (8), rk is the part of the data vector that remains
after d is projected onto the subspace spanned by the columns of Uk .
Both (14) and (15) provide convenient measures for an upper limit
of k: SNRs smaller than some threshold, or χ 2 much smaller than
N can be avoided by choosing k sufficiently small. Theoretically
χ 2 should be equal to N for the best compromise between model
resolution and error, but if the data error σ e is uncertain, χ 2 is
uncertain as well, and often a range such as 0.5N < χ2 < 2N is
considered acceptable.

If the data or model averages are not zero, as we assumed, we
can always redefine them by subtracting the average after a first
inversion attempt. If the data errors are not uniform, we can scale
the system (1) to a uniform data error, by dividing each row and
its associated datum by the standard error. If we know the standard
error exactly, this leads to univariant data (σ 2

e = 1). In practice,
we often assign a quality factor to the data, which represents our
subjective judgement of the relative error level. For this reason we
maintain an arbitrary, but uniform, error σ e which can be different
from 1, and that can be estimated using (13).

For the prior uncertainty σ m in the model one usually has some
idea of reasonable prior variations to be expected (e.g. 1 per cent
for the variations in intrinsic P velocity in the lower mantle), and
we scale the system such that σ m becomes 1 for scaled parameters,
even though posterior estimates for the model variance may force
us to modify the prior σ m.
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Two other measures exist that may help to determine an optimal
cut-off rank k, though these are in general more difficult to apply.
First of all, we can solve (1) with SVD after substituting

mk = Vk yk , (16)

AVk yk = Uk�k V T
k Vk yk = Uk�k yk = d ,

so that we find mk after computing:

yk = �−1
k U T

k d = �−1
k τk . (17)

Since the columns of Vk are orthogonal, mT
k · mk = yT

k V T
k Vk yk =

yT
k · yk , so that the norms of mk and yk are the same and

|mk |2 =
k∑

i=1

τ 2
i

λ2
i

(18)

which can be used to impose a limit to the rms norm of the model
variations. The problem with this measure is that, unless the full
model space is resolved, the rms norm is difficult to interpret phys-
ically. As we shall see in the next section, this is certainly the case
when we subdivide the matrix into clusters with geographically
restricted sensitivity.

Secondly, a more physically meaningful strategy is to limit the
L∞ norm of mk :

‖ mk ‖∞= sup(|mi |) , (19)

where we find the solution from (16) and (17):

mk = Vk yk = Vk�
−1
k U T

k d , (20)

but this involves the non-sparse M × k matrix Vk , and thus an
additional computational effort. To avoid computing Vk explicitly,
we use (5) to write the first k eigenvectors in terms of Uk :

Vk = AT Uk�
−1
k (21)

and use AT Uk = (U T
k A)T , which we compute anyway to construct

the condensed system (6). Or, combining (8), (20) and (21):

mk = AT Uk�
−2
k τk . (22)

3 C LU S T E R I N G O F S PA R S E M AT R I X
ROW S

For large linear systems, the singular value decomposition can be
accomplished using Monte Carlo techniques (Voronin et al. 2014).
However, the projection with U is likely to destroy the sparsity of the
system since many data influenced by many different geographical
regions are mixed in the projected datum. In our experience, the first
datum, the one with the largest eigenvalue, represents often a kind
of average among all data, thus completely destroying the locally
concentrated nature of the sensitivity.

To counter this disadvantage, we first perform a clustering of
data such that all data within one cluster have a localized sensitivity
in the same region. The basic idea is that the linear system (1) is
invariant to the ordering of the data. We shall wish to group them
into clusters of data that are isolated geographically, that is, that
share many columns identical to zero.

To accomplish this, we find groups of rows that share the same
zero columns. We define a cluster of rows by the set of columns that
are zero in each element of the cluster, and define three measures
of sparsity and overlap of non-zeros between a row and a candidate
cluster:

Figure 2. Ray path coverage for the first few surface wave clusters.

RinC: the ratio between the number of non-zeroes in the row that
overlaps with those in the cluster, and the total number of non-zero
columns in the row,

CinR: reversely, the fraction of non-zeroes of the cluster that
overlaps with the row’s non-zeroes,

Nboth: the number of columns that has a non-zero either in the
row, or in the cluster, or in both.

The algorithm that performs such clustering starts with the first
row as the first cluster, and computes the overlap RinC and CinR of
each subsequent row with all existing clusters. It selects whichever
of these two is largest, then determines for which cluster this over-
lap is largest. If this maximum overlap is larger than a specified
threshold, and if Nboth represent an acceptable sparsity, the row is
added to the cluster with largest overlap. If not, the row is the first
element of a new cluster.

Though this clustering procedure can be time-consuming, several
shortcuts provide a significant computational speedup. The columns
in each cluster are represented by the bits in an integer array, which
are set to 1 if the column is non-zero. The software was written
in Fortran 90 which has convenient functions for bit manipulation
and testing. Furthermore, as we create and modify clusters, we keep
track of the average locations of the stations and sources constituting
the endpoints of the ray paths in each cluster. If the distance between
the row’s station or source and that of the cluster average is larger
than a specified distance �max, the cluster is considered a non-
candidate, dispensing of the need to compute the overlap. Fig. 2
shows the largest clusters for the surface wave data set discussed in
the next section.

The distance parameter, �max, not only speeds up the clustering,
it also influences the width of the resulting clusters since it may
be more restrictive than the minimum overlap specified. We can
also set an upper limit to the sparsity allowed for a cluster, or limit
the number of data in a cluster. If necessary, we can repeat the
process after size reduction and cluster nearby clusters to create
more populous (but wider) clusters.

Since the clustering results in submatrices with a much smaller
number of rows than present in the total data set, the singular value
decomposition becomes much more efficient. The column dimen-
sion of the submatrices remains the same, though, and this may
be very large if one wishes to exploit the detail present in finite-
frequency kernels. For example, in the wavelet-friendly parame-
terization advocated by Simons et al. (2011) and applied in full
three dimensions by Charléty et al. (2013), the number of columns
is more than 3.6 × 106 per parameter inverted (e.g. Vp, Vs), and
this may still render the computation of SVD, and the storage of
the (non-sparse) eigenvector matrices V difficult. An efficient way
around this is to compute the non-sparse matrix AAT , which is only
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of size N × N if N is the number of rows in the subcluster, typically
of order 102–103, and use (e.g. Nolet 2008):

AAT U = U�2 . (23)

Although the squaring of A leads to a loss of precision, certainly
when done in single precision as we did, this is not a serious concern
since all we wish to do is to project, using (6), onto a subspace of the
most influential data, and inaccuracies in eigenvalues or eigenvec-
tors do not affect the validity of this projection. The computing time
needed scales as N3, but if we limit the number of data in a cluster
(we used 5000), a few hours on a single processor is sufficient for
the computation of U T

k A for that cluster. Most clusters are much
smaller and can be transformed in a few minutes CPU time.

The size reduction of very small clusters may not be worth the
effort. We do not throw such data out; instead, we collect them in
an unreduced matrix Arest. Once all large submatrices Ai have been
reduced in size they may be combine with the remaining data in
Arest to formulate a linear system smaller in size but with no loss of
important constraints on the model:⎛
⎜⎜⎝

U T
1 A1

U T
2 A2

...

Arest

⎞
⎟⎟⎠m =

⎛
⎜⎜⎝

U T
1 d1

U T
2 d2

...

drest

⎞
⎟⎟⎠. (24)

Clustering resembles the method of ‘summary rays’ (summing
rays from nearby sources to the same or nearby stations) but is
more powerful. Bolton and Masters (2001) reduce the influence of
outliers by using the median of the data in a summary ray as the
‘observed’ delay. This assumes that there is no important variation in
the delays that contribute to the summary ray, unless it is an outlier.
In our approach, the variance σ e can be used to identify outliers
while taking the model influence over the cluster into account. To
do this, one inverts for a model mk = V T

k yk using the cluster data
only. Provided the model is overparametrized, ‘true’ data can always
be fitted in this way and any remaining residuals in rk = d − Amk

must be due to data error. If this exceeds a threshold (e.g. 3σ e) one
identifies (and removes) the datum as an outlier. Note that outliers
cannot be removed after projection, since the transformation U T d
spreads their power over all new data τ .

4 E X A M P L E S

The success of the clustering SVD stands or falls with the ability to
keep the decrease in sparsity of projected matrices under control.
To judge our ability to do so, we investigated three different cases,
one involving surface wave phase delays, the other two for body
wave cross-correlation delays and delays in onsets, interpreted with
finite-frequency theory and ray theory, respectively.

4.1 Surface wave phase anomalies

To determine what we accomplish in the case of data with a strong
overlap, we investigate the size reduction of the sensitivity ma-
trix for a massive data set of surface wave phase anomalies. We
computed the matrix for surface wave phase velocities at five fre-
quencies (periods 62, 88, 114, 151 and 174 s) for the fundamental
Rayleigh mode phase delays that were used in the construction
of tomographic model S40RTS (Van Heijst and Woodhouse 1999;
Ritsema et al. 2011). This is only a subset of the frequencies mea-
sured; we exclude major arc data and higher modes, and we ignore
intermode coupling in the computation of A. Even so, the finite

Figure 3. Signal-to-noise ratio (SNR) for the projected data τ i of the largest
cluster, with 5001 surface wave phase delays. The solid part of the curve
shows the first 466 data with a SNR larger than 1.

frequency kernels for 3 767 043 phase anomalies fill a giant sparse
matrix that occupies 1 103 139 833 531 bytes (1103 Gbyte) on disk.
Application of the the optimized sparse representation described in
the Appendix is powerful in the case of surface wave sensitivity:
by itself it was already able to reduce the size to 610,605,684,321
bytes (611 Gbyte).

For efficient clustering we compare only the overlap in the surface
layer of the model. We started using a very restrictive clustering, set-
ting �max = 700 km, to optimize eigenvalue drop-off in the densest
clusters. This yielded 1678 clusters with more than 400 data (718 of
which had more than 1000 data). To avoid excessive computation
times for eigenvector computations, we limit each cluster to at most
5001 data (starting a new cluster if necessary). This forced the trun-
cation of the 176 largest clusters. On the other hand, the very strict
clustering created many very small clusters, many of them probably
too small to make it worthwhile to condense them by projection—
the loss of sparsity is only compensated if many rows in the cluster
are redundant and lead to an abundance of small eigenvalues. We
therefore subjected the clusters with fewer than 400 rows to two
more rounds of clustering but with increasingly relaxed �max, first
of 1400 km, and again clustering clusters with less than 400 data in
a final round with �max = 2100 km. This iterative strategy allows
populous clusters to remain narrow, thereby optimizing the rate of
decrease of eigenvalues in each cluster. The final result was a total
of 5659 clusters with at least 10 data, 4262 of which had more than
200 data; only 5500 rows (or fewer than 0.15 per cent) were consid-
ered too isolated to fit in a cluster of at least 10 paths, and delegated
to Arest with no attempt to reduce the size.

Each of the 5659 matrices were subsequently subjected to SVD.
The drop-off in λi or SNRi is approximately exponential (Fig. 3),
and limiting the SNR of accepted projected data τ i to 1 allows us
to reduce the number of rows by an order of magnitude. Using a
cut-off at a SNR of 1, the size of the projected matrix system was
reduced to 63 028 499 791 bytes (63 Gbyte), or 5.7 per cent of the
original matrix size.

The rows of the transformed matrix U T A are in model space, and
reflect the geographical sensitivity of the Earth to the associated data
τ . For plotting purposes we equalize the Euclidean length of each
row by scaling them with the associated eigenvalue (since AT U =
V � we have �−1U T A = V T and the columns of V are eigenvectors
normalized to 1). Fig. 4 plots selected rows of V T for one of the
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Figure 4. This figure shows horizontal cross-sections (depth 68 km) through selected rows of the matrix V T = �−1U T A for one of the largest clusters of
surface wave phase delays. The numbers in the upper left corner denote the signal-to-noise ratio for the projected data as determined from eq. (14).

large clusters with 5001 data. Note the increased complexity of
the sensitivity as the eigenvalue decreases. The sensitivity shows
structure of a scale length comparable to the voxel size (about
70 km), thus justifying the use of a model of very high dimension,
as advocated by Chevrot & Zhao (2007).

4.2 P-wave delays by cross-correlation

We tested the clustering of body wave cross-correlation delays on
a new—still incomplete—data set of multifrequency delay times.
The current set has 25 046 delays measured from 60 deep earth-
quakes distributed evenly over the Earth. This data set is thus less
redundant in path coverage than the surface wave data set discussed
in Section 4.1. Also, because the sensitivity of body wave delays
spreads out in the lower mantle, the need to keep sparsity under con-
trol in transformed matrices is more challenging than for surface
waves.

The ray path coverage of the complete set is shown in Fig. 5.
The matrix A was computed using finite-frequency sensitivity, ef-
ficiently computed with ray theory (Dahlen et al. 2000; Mercerat
& Nolet 2012). A series of bandpass filters is applied, such that
for every ray path up to five frequency-dependent arrival times are
measured (‘multiple-frequency tomography’, Sigloch et al. 2008).
The redundancy in our data set derives in part from lack of inde-
pendence among observations in different passbands for the same
source-station combination.

The original matrix occupied 6.37 Gbytes on disk, with a sparsity
of 1.5 per cent. The densest row had a sparsity of 3.2 per cent. A first
reduction is again obtained by optimizing the sparse representation,
which reduces the size to 3.72 Gbyte.

We started with a tough clustering, specifying a narrow �max =
400 km. In this first run a total of 898 clusters was found, many of
them too small to condense them by projection. However, the largest
43 clusters (each with more than 100 paths) have 15 092 data or
60 per cent of the total data set. The average sparsity of these 43
clusters is 2.4 per cent, with the densest matrix 3.9 per cent sparse,
indicating that we are successful in retaining sparsity. The remaining
clusters were then subjected to two similar rounds of clustering with

�max increased to 1400 and 2400 km, respectively. The resulting
172 matrices have an average sparsity of 2.3 per cent (three matrices
had a sparsity of 4 per cent or more). A small fraction, 132 data
(0.5 per cent), was not clusterable or ended up in clusters with less
than 10 data. These were not subjected to the projection procedure,
but simply added as Arest.

Again using a cut-off at a SNR of 1, the final size of the projected
matrices is 0.38 Gbyte, a reduction to 5.9 per cent of the original
size.

We inspect the largest cluster, coloured red in Fig. 5. Fig. 6
shows several rows of the matrix �−1U T A—the sensitivity to the
projected data, weighted by the eigenvalue—plotted on a vertical
cross-section through the mantle, showing that the rows cluster
about the ray paths from sources beneath the Sea of Japan and a
dense receiver region (mostly U.S. Array stations) in North America.
The top left-hand plot is representative for eigenvectors with large
λi that have the nature of an average over a banana-shaped zone of
sensitivity. As the row number increases (and the SNR decreases),
the sensitivity becomes more and more complex, and extends over
a wider region. Note that the complexity increases most towards the
receiver end, a consequence of the dense array coverage allowing
for higher resolution.

The first three eigenvectors (not plotted) are dominated by the
‘correction’ columns. Since origin-time and hypocentral correc-
tions have a large weight, including them tends to dominate the first
few eigenvectors. The part of these vectors in model space takes
the character of an averaging kernel, while the correction terms
ensure the orthogonality. This depends somewhat on the prior un-
certainty used to scale the correction parameters (we used 20 km for
hypocentre location, 1 s for the origin time), but the matrix entries
for corrections will always dominate numerically. Note that classi-
cal techniques to render the system insensitive to source time and
location (Spencer and Gubbins 1980; Masters et al. 2000) cannot be
applied since one event may occur in more than one matrix cluster.
In general one thus has to include corrections to the source param-
eters into the linear system, and solve for them simultaneously with
the tomographic model. Since the number of them is usually much
smaller than the number of data (240 corrections against 25 046
data in this case) this poses no extra burden to speak of.
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Figure 5. The ray coverage for the complete data set of P waves from deep earthquakes. The paths in the first cluster are indicated by the red colour.

Figure 6. This figure shows a vertical cross-section through selected rows of the matrix �−1U T A for the largest cluster of P-wave delays. Numbers in the
left corner denote the signal-to-noise ratio for the associated projected datum τ i. The colour scale is between ±1.6 in each plot. The apparent pixelation of the
images is due to the finite size of the voxels used to parameterize the model. The map shows the geographical location of these cross-sections (solid line).

4.3 ISC delay times

ISC delay times have long been used in seismic tomography. The
delays represent the onset of the body wave, and are therefore related
to the model perturbations m with ray theory, that is the rows of A
are line integrals, rather than the volume integrals used for cross-
correlation delays. The matrices are thus much sparser. In the cubed
Earth parametrization of Charléty et al. (2013), P-wave ray paths
cover typically 100–200 voxels, equivalent to a sparsity of the order
of 0.01 per cent.

While this may seem to relax the memory requirements, the fact
that the ISC database contains tens of millions of delays still makes
it desirable to be able to condense the linear system without loss
of information. Clustering is always useful to estimate data errors
with eq. (13). However, the clustering that works well for volume
kernels was found to fail in the case of ray-theoretical matrices, since
the decrease in sparsity tends to compensate the gains obtained by
projection. In one example, a cluster of 3770 rays, truncated at a
SNR of 1 for 823 data, saw the size of the matrix increase by a
factor of more than 5.

The recommended strategy is therefore the classical remedy of
summary rays, averaging rays over very closely located events to
the same station. The best way to do so is to average both the delays
and their associated matrix rows, rather than average the delays
only and adopt some representative ray path. This involves more

computation but avoids modelling errors, and has the advantage to
give the rays a narrow width, which is more in accordance with the
otherwise non-modelizable finite-frequency effects caused by noise
(Stark and Nikolaev 1993). For cluster S with NS members this
gives one summary row:

M∑
j=1

1

NS

(∑
i∈S

Ai j

)
m j = 1

NS

∑
i∈S

di ± σS . (25)

The standard error σS in the averaged datum can be found from
(Nolet 2008):

σ 2
S = 1

NS

∑
i∈S

σ 2
i + σ 2

m ,

where σ 2
m provides a water level that accounts for the error caused

by ignoring lateral variations within the summary ray. It can be
estimated from the distribution of projected data using eq. (13).

5 D I S C U S S I O N A N D C O N C LU S I O N S

The detail visible in the sensitivity such as shown in Figs 4 and 6
for data with a significant SNR justifies the use of models with a
dense parameterization, at least locally, such as to avoid any loss of
information by underparametrizing. The clustering SVD mitigates,
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or even removes, the computer memory problems posed by the
resulting large matrices.

5.1 Cut-off criteria

There is some flexibility in the choice of cut-off rank k, such that
even huge matrices might still be inverted with an acceptable loss
of information, for example by setting the threshold for SNR higher
than 1. For clusters, the cut-off determined by χ2 (eq. 15) leads to
a smaller system than using the SNR of the projected data, but this
is misleading: usually the data assembled in a cluster can easily be
fitted with an average velocity perturbation, and τ k may be close to
zero for high k. This average velocity is not likely to be sufficient to
fit the total data set, for which lateral variations within the cluster
may be needed. The use of (15) is thus restricted to the case where
a full matrix is reduced. If the system is large enough to make
clustering necessary—and this will often be the case—the cluster χ2

has little use and (14) is the preferred diagnostic that can determine
the cut-off rank k. The same applies to model perturbations over the
cluster (eqs 18 and 19). In practice, eq. (14) is thus the most powerful
diagnostic we have to reduce the matrix size of very large systems
without the risk of losing significant information. Although we use
a sharp cut-off for the eigenvalues when reducing the matrix in size,
one is still free to use ‘smoothing’ or other regularization techniques
when inverting the reduced system. Voronin et al. (2014) show
how the main characteristics of a tomographic inversion remain
preserved even with a drastic culling of eigenvectors.

5.2 Prior correlations

We assumed the data errors as well as the model perturbations
to be a priori uncorrelated, in a Baysian sense. In principle both
could be transformed to diagonalize their covariance matrix if we
have prior knowledge of correlations—the difficulty is that precise
information is not available and any prior covariance is at best an
educated guess. For the data one therefore usually resigns oneself
to use uncorrelated errors.

Whether one is justified to impose prior smoothness constraints
on the model is debatable (see the discussion in Nolet 2008,
p. 280). Of course, many tomographers prefer the ‘smoothest pos-
sible’ solution so as not to introduce unwarranted detail that might
be misinterpreted. But such regularizing towards a smooth model
can always be done at the time of inversion, and is not needed at the
time of winnowing the data as done in this paper.

5.3 Other error estimators

It is of interest to compare the error estimation presented in this
paper with earlier efforts to estimate σ 2

e . Although many efforts have
been made to estimate the true variance of the errors ei in body wave
delay times (e.g. Morelli and Dziewonski 1987; Gudmundsson et al.
1990; Bolton and Masters 2001), considerable uncertainty exists.
To the best of our knowledge no formal analysis of the errors in
global surface wave delays exists, while the published estimates for
the errors differ considerably even for P-wave delays.

Morelli & Dziewonski (1987) use summary rays to find σ 2
m and

σ 2
e in the ISC delay time data. The assumption is that such rays

have the same delay if the ray paths are very close. The variation of
delays within a single bundle of summary rays then is representative
for the observational error in the delays. If there are many rays in
the bundle, the error in the average tends to zero: statistical theory

states that the variance in an estimate over N samples decreases
as 1/N, and therefore the standard error as 1/

√
N . By comparing

the variation among delay averages of many bundles with different
geographical locations, one obtains also an estimate of σ 2

m as N →
∞. Plotting the variance σ 2

N of delay averages in bundles with N
rays against N allows one to fit a curve for σ 2

N :

σ 2
N = σ 2

e

N
+ σ 2

m (26)

by optimizing σ 2
e and σ 2

m .
The difficulty with this method is that, to obtain a sufficient

number N of rays in the bundle, the source and receiver regions
must be large (Morelli and Dziewonski choose 5◦ × 5◦ areas).
Gudmundsson et al. (1990) try to circumvent this by analysing the
variance also as a function of the bundle width and investigating the
variance in the limit of zero bundle width.

The similarity between (13) and (26) is deceptive. Even though
the clusters apparently replace the summary rays in the earlier meth-
ods, we allow for the model to influence the distribution of observed
delays over the cluster and we avoid the assumption that the true
delays are the same over every ray path in the cluster. The cluster
can therefore have a larger population than a typical summary ray,
which improves the statistics. Since the clustering SVD allows for
overparametrization there need be no danger to underestimate σ m.
We observe also that (26) represents a distribution over many ray
bundles, whereas (13) refers to the distribution over one cluster only.
The two approaches are thus fundamentally different.

Formal error estimates are also obtained when observing de-
lays using the cross-correlation method of VanDecar and Crosson
(1990), which is at the basis of recent data analysis strategies (Lou
et al. 2013; Bonnin et al. 2014; Lou & van der Lee 2014), but in
our experience these may be highly optimistic, probably because er-
rors in the delay estimates between overlapping pairs of stations are
assumed to be independent, which they clearly are not when, for ex-
ample, a reverberation is present in the waveform of one particular
station that influences all cross-correlations with that station.

The formal error estimates provide a rationale for the truncation
of eigenvalues and is therefore essential to the matrix size reduction.
Equally essential is the clustering. For body wave delays, we found
that finite-frequency theory produces matrices with a sparsity of
1.5 per cent. Clustering succeeds well in keeping the loss of sparsity
under control, since sparsity is raised only slightly to 2.3 per cent in
the projected matrices.

For ray-theoretical matrices, appropriate for onset times such as
published by the ISC, the method of summary rays is more effective
to reduce matrix size than the projection method described in this
paper. The disadvantage of summary rays is that one has little control
over how much information is lost in the averaging. However, one
could imagine applying the clustering to selected ray subsets, and
investigate the eigenvalue drop-off as a function of the summary ray
width. Ideally one would choose a summary ray width that results
in only one significantly large eigenvalue.

5.4 Delays versus waveforms

The matrices investigated in this paper reflect delays, that is data
in the phase domain. They are thus inherently more linear than
full waveform data which involve harmonics like cos ωδt that can
only be linearized if the delay δt 
 ω−1. Abandoning waveform
information for the linearity of delay times may at first sight seem
unwise. However, because of the extra non-linearity, the computa-
tional demands of waveform tomography are extremely large, and
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some difficulties are still encountered with non-linearity. This re-
stricts waveform tomography to low frequencies, and delay times
remain the only option for the higher frequencies.

Though the ray-based ‘banana-doughnut’ kernels rely on the
identification of a ray path for the cross-correlated wave, one
can compute the sensitivity for any part of the seismogram using
finite-difference or spectral element methods (Tromp et al. 2005;
Nissen-Meyer et al. 2007). Moreover, multi-frequency tomography,
involving the measurement of body wave dispersion (Sigloch et al.
2008), recovers at least some of the information present in wave-
forms, as was shown by Mercerat et al. (2014). The large reduction
in matrix size obtained then offers the perspective to forego the
time-consuming gradient search now generally used with the ad-
joint approach. If a smooth background model is used, the kernels
computed for delays in identifiable arrivals, using full waveform the-
ory with the spectral element method, are similar to those computed
with ray theory for P waves, and only slightly more complicated
for S waves (Mercerat and Nolet 2012). The difference is caused
by energy not modelled by ray theory, such as reverberations, mode
conversions and diffractions, that may remove the ‘doughnut hole’
where sensitivity is small, thus reducing the sparsity of the kernels.
But the sparsity of such kernels is only slightly reduced, and we
suspect that the difference in sparsity for arbitrary waveforms (not
associated with a simple ray path) will be similar. The difference
in sparsity of clusters, which also tend to fill in the doughnut hole,
might even be negligible. If that is the case, and if the linearity
of delays holds for arbitrary waveforms, solving the reduced ma-
trix system would have the ability to greatly speed up the adjoint
approach. This will be the subject of future research.
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A P P E N D I X : S PA R S E M AT R I X S T O R A G E

If the model is described by a local parameterization, the resulting
matrix A is sparse, that is most of its elements are zero (Nolet 2008).
Very small elements can be set to zero with little loss of precision.
The original matrix elements have been set to 0 if smaller than
3 × 10−4 times the largest element, where we used the theoretical
row sum for a smooth background model (Tian et al. 2007) to check
the accuracy and make sure that this truncation does not introduce
errors in the predicted values of the delays larger than a prescribed
value, usually a few per cent.

Before writing U T
k A to disk, we again perform this truncation

of small elements. Since U T
k A = �k V T

k , while the rows of V T
k

are eigenvectors normalized to 1, the ith row of U T
k A is a vector

of length λi. This property can be used to monitor the quality of
the truncation. Note that the elements of the first rows are larger
than those of rows belonging to the smaller eigenvalues. This is
essentially why the first data have a better SNR than data associated
with smaller λi, even though we showed that all projected data have
the same standard error. Thus, the first rows decrease little in norm
as a result of the truncation, but the effect is stronger when the
eigenvalue, and the SNR associated with it, decreases. We keep
track of the effects of truncation by checking that the length of the
truncated row to that of the predicted vector length agree to better
than 1 per cent. The error introduced by this truncation remains well
below the observational uncertainty.

A common storage format for unstructured sparse matrices is the
compressed sparse row (CSR) format, which uses an array a(i) to
store the non-zero elements of A, an array ja(i) to store the column

number of a(i), and an array na(k) that has either the starting index
of row k in a and ja, or the number of elements in row k (Dutto et al.
2000). For an N × M matrix with S non-zeros, this requires 2S + N
numbers.

Though tomographic matrices are neither band- nor block-
structured (for which more powerful storage systems exist), the
sensitivity kernels that form the rows of A are geographically
restricted. The non-zeros in each row of A therefore occur of-
ten in groups. We found that we can obtain a significant re-
duction in the size of ja(i) by redefining the sparse matrix
format:

(i) an isolated non-zero is defined as in the classic CSR format,
(ii) the first non-zero of a group is identified by giving ja(i) a

negative sign,
(iii) the (positive) ja(i + 1) that follows a negative ja(i) indicates

the last member of a non-zero group, and
(iv) na(k) gives the number of ja(i) in row k.

This scheme requires αS + N numbers with 1 + 2(N/S) ≤ α ≤ 2.
In practice we find that this reduces the matrices for the volumet-
ric sensitivity of finite-frequency body waves by about 30 per cent
with respect to a classical CSR format, while for ray-theoretical
matrices the improvement is minimal (about 5 per cent). For the
very compact surface wave kernels, the memory needed to store the
column numbers ja(i) is an order of magnitude smaller than that
needed to store the matrix elements a(i), leading to a reduction of
almost a factor of 2: implementing this scheme on the large matrix
discussed in Section 4.1, its size was reduced to 55 per cent of the
original size.

 at M
IT

 L
ibraries on M

ay 11, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/

