A fast and high-order HDG solver for the high-frequency Helmholtz equation

Matthias Taus

Postdoctoral Associate, Department of Mathematics

In collaboration with Leonardo Zepeda-Núñez and Laurent Demanet

MIT Earth Resources Laboratory 2016 Annual Founding Members Meeting May 19, 2016

Motivation

Wave propagation in inhomogeneous media

Slide 2 2016 Annual Founding Members Meeting

Model Problem

$$-\Delta u - \omega^2 m u = f \quad \text{in } \Omega$$
$$+ A.B.C \text{ on } \partial \Omega$$

Massachusetts

Institute of

Technology

Absorbing boundary conditions: Perfectly Matched Layers (PMLs)

$$-\operatorname{div}\left(\tilde{\Lambda}\nabla u\right) - \omega^2 \tilde{m}u = \tilde{f} \quad \text{in } \tilde{\Omega}$$
$$u = 0 \quad \text{on } \partial\tilde{\Omega}$$

Existing discretization techniques

- 1. Finite Difference Methods (FD)
- 2. Integral Equation Methods (IE)
- 3. Finite Element Methods (FE)

	FD	IE	FE
Inhomogeneous media	v	*	 ✓
Flexible meshes	*	~	 ✓
Non-smooth approximations	*	~	 ✓
High-order approximations	v	~	 ✓

Discretization

High-frequency problems

 \rightarrow High-order approximations

Inhomogeneous wave speeds \rightarrow Non-smooth approximations

Discontinuous Galerkin Finite Element Methods (DGFEMs)

Efficiency

- Assembly of the system matrix: O(N)
- Solution of the resulting linear system:
 - Direct solver: $O(N^3)$
 - Iterative solver: $O(\omega N^2)$
 - Preconditioned iterative solver: $O(\omega N)$

Problem:

Even preconditioned iterative solvers are not feasible for high-frequency problems!

Solution: Method of Polarized Traces

The Method of Polarized Traces (L. Zepeda-Núñez)

- 1. Divide the domain into layers
- 2. Reduce the problem to the degrees of freedom λ on the interfaces by local (direct) inversions
- 3. Split $\lambda = \lambda^{\uparrow} + \lambda^{\downarrow}$ to get a well-structured matrix:

4. Precondition with the upper- and lower-triangular matrix.

Existing applications

Low-order methods (FD and standard FE):

- + Solution in ${\cal O}(N)$ time, independently of frequency ω
- + Parallelism

Problem:

For high-order methods, the problem has to be reduced to a layer of unknowns around each interface.

Solution: Discontinuous basis functions and DGFEMs

Review

DGFEMs + Method of Polarized Traces

Accuracy:

- + Non-smooth approximations
- + High-order approximations
- + Flexible Meshes

Efficiency:

- + O(N) time
- + Parallelism
- + Efficiency independent of the order

Additional desirable features:

- + Adaptively refined meshes
- + Arbitrary geometries

Example 1: Accuracy

		$\parallel p=1$		p=2		p=3	
_	h	Error	eoc	Error	eoc	Error	eoc
-	1.4E-1	110%		15%		1.9%	
	7.1E-2	75%	0.6	1.4%	3.4	0.1%	4.2
	3.5E-2	22%	1.7	0.11%	3.7	$7\cdot 10^{-3}\%$	3.9
	1.8E-2	5.8%	1.9	$10^{-3}\%$	3.4	$4.7 \cdot 10^{-4}\%$	3.9

Example 1: Efficiency

Example 2

Massachusetts

Institute of

Future Work

- Extension to 3D
- Spectral discretizations
- Adaptive refinements

