Deep Learning with SymAE to Correct for Deepwater Statics

Brindha Kanniah

Graduate Student, EAPS

In collaboration with Prof. Laurent Demanet & Prof. Pawan Bharadwaj May 25, 2022

Deepwater Statics

- Statics refer to time-shifts in reflection seismic data due to velocity heterogeneities between source and receiver.
- Corrupts the 3D image and inaccuracies propagates into 4D time-lapse analysis.
- Deepwater settings have spatio-temporal variations in seawater column.
- Tides, season, location, ocean currents effects water velocity.
- Statics correction = removal of time-shifts in individual records, so reflectors stack coherently.

Problem: Two-Step Workflow for correcting deepwater statics has complications and is computationally expensive.

Question: Can we bypass this workflow with deep learning to correct offset and traveltime dependent time-shifts?

Solution: SymAE to disentangle effects of varying water velocity and coherent subsurface geology – and correct time-shifts.

Context

SymAE Experiments Separation of time scales

Image from Bharadwaj et al., [2022]

Nuisance (fast varying) corrupts coherent (slow varying) measurements.

Water velocity variations

Context

SymAE Experiments Separation of time scales

Image from Bharadwaj et al., [2022]

Nuisance (fast varying) corrupts coherent (slow varying) measurements.

Water velocity variations

Physical Model

Image from Bharadwaj et al., [2022]

Image from Bharadwaj et al., [2022]

Image from Bharadwaj et al., [2022]

MIT Earth Resources Laboratory Annual Founding Members Meeting 2022 Phir

Time-Shifts Reach Zero

Results

Time-Shifts Reach Zero

Results

Шiī

++ Normalized Residual Norm across Different Ranges of Data			
Test Data	[-2,2] SymAE	[-6,6] SymAE	[-25,50] SymAE
[-2,2] [-6,6] [-25,50]	0.084 0.190 0.721	0.104 0.098 0.322	0.201 0.202 0.200

 $\frac{||\text{reference-redatumed}||_2}{||\text{reference}||_2}$

Conclusion

Question: Can we bypass conventional workflow with deep learning to correct offset and traveltime dependent time-shifts?

- SymAE is a learning algorithm capable of performing offset and traveltime dependent time-shifts in seismic measurements.
- Caveat: Training dataset is simplified compared to real subsurface possibilities.
- Real deepwater challenges: lateral velocity variations and subsidence/uplift of seafloor.

