. . i Stochastic property prediction
Managing CO> fault migration oo gy
hazard for Safe, Large-Scale . I i

Geologic Carbon Storage
Lluis Salo-Salgado

PhD Candidate, Civil and Environmental Engineering  Faulted stratigraphy Fault

In collaboration with Josimar A. Silva, J. Steven Davis, Physics-based modeling
Ruben Juanes Cross sect.

May 25, 2022

CO, plume

O, saturation

HA

AN Map view

$

] u
== MIT Earth Resources Laboratory I
¥~ Annual Founding Members Meeting 2022 II



Carbon Capture, Utilization and Geologic Storage (CCUS):
A Key Player to Meet Global Climate Goals

U.S. primary energy consumption by energy source, 2020
total = 92.94 quadrillion total = 11.59 quadrillion Btu

e GHG and CO. emissions peak this decade in modeling pathways that limit global sriis emalunis @
warming to 1.5 or 2°C (IPCC, 2022)
However, fossil fuels still provide ~80% of primary energy (EIA, 2021) o
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Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1,

6 April 2021, preliminary data
€1a’ Note: Sum of components may not equal 100% because of independent rounding.
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Carbon Capture, Utilization and Geologic Storage (CCUS):
A Key Player to Meet Global Climate Goals

e GHG and CO2 emissions peak this decade in modeling pathways that limit global
warming to 1.5 or 2°C (IPCC, 2022)
However, fossil fuels still provide ~80% of primary energy (EIA, 2021)

e Mitigation strategies include carbon dioxide removal (IPCC, 2022)
CCUS is an integral part of negative-emissions technologies
such as BECCS or DAC (EASAC, 2018)
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U.S. primary energy consumption by energy source, 2020

total = 92.94 quadrillion total = 11.59 quadrillion Btu
British thermal units (Btu)

s 2% - geothermal

11% - solar

22% - hydroelectric

26% - wind
4% - biomass waste
17% - biofuels biomass

. b WOOd

Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1,
/\ April 2021, preliminary data
€1a’ Note: Sum of components may not equal 100% because of independent rounding.

Climate Change 2022
Mitigation of Climate Change

Negative emission technologies:
What role in meeting Paris Agreement targets?




Migration of COz through faults and leakage into overlying units and/or the surface is *
a concern in large-scale Geologic Carbon Storage (GCS)
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We focus on faults in soft siliciclastic basins, best suited to diminish the hazards of
induced seismicity and fault leakage

o Soft siliciclastic basins have advantageous rheological properties
for large-scale GCS

Juanes et al., PNAS 2012
Vilarrasa & Carrera, PNAS 2015

fault volume

Schmatz, Urai, et al. (RWTH Aachen) Surface segmentation pattern
Video from StrucGeology Youtube channel modified from Childs et al., JSG 2009
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https://www.youtube.com/watch?v=HMod1bhH-fo

Previous approaches cannot quantify the fault permeability tensor.
This makes it difficult to understand fault CO> migration hazard
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Previous approaches cannot quantify the fault permeability tensor.
This makes it difficult to understand fault CO> migration hazard

Industry workflow

Alternative approaches
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We want to understand and model the effect of clay smears
on fault zone permeability

We approach the modeling of fault permeability with the following goals:
1. Include a physics-based description of clay smears
2. Quantify uncertainty

3. Include anisotropic permeability (km« ,kyy / kzz)
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We developed a new methodology, PREDICT, which uses a physics-based,
probabilistic approach to modeling the directional components of the fault permeability tensor.
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PREDICT allows understanding the relationship between the faulted stratigraphy, 10

the fault core materials, and the resulting anisotropic fault permeability

The output considers uncertainty in the geologic variables influencing permeability,

and is best suited for fault permeability scenario modeling and hazard assessment.

Clay-poor sequence Clay-rich sequence
100
\ >
90 %- ‘ E k‘ww kxw
80 E ‘. _8
60 — al
— < AN '
2 w0 o Permeability
40 g k
30 4 .‘ kzz Zz
o
20 L(E | I
10 1 l

0

Salé-Salgado et al., in preparation

s MIT Earth Resources Laboratory I m
e Annual Founding Members Meeting 2022 II



PREDICT allows understanding the relationship between the faulted stratigraphy, H

the fault core materials, and the resulting anisotropic fault permeability

Cross section in simulation model Throw window in PREDICT Output Permeability
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e  Obtain the 3-component upscaled permeability distribution for each throw window
e The output is suitable for either scenario-based modeling or sampling in a fully probabilistic framework

Salé-Salgado et al., in preparation
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Next steps

1. Multi-cell upscaling
2. Validation with field and laboratory measurements

3. Extension to 3D
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Fault Zone CO2 migration in the Miocene section offshore Texas (Gulf of Mexico)

Goal: Assess potential migration of CO. through a fault partially offsetting the caprock
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Fault Zone CO2 migration in the Miocene section offshore Texas (Gulf of Mexico)

Goal: Assess potential migration of CO. through a fault partially offsetting the caprock
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Fault Zone CO2 migration in the Miocene section offshore Texas (Gulf of Mexico): 5
Base-case fluid properties

e We used a black-oil formulation with a thermodynamic model that considers CO; dissolution in the brine
(Hassanzadeh et al., IJGGC, 2008)

o Relative permeability data are Corey-type curves that were synthetically generated. They are consistent with those
previously used in the Gulf of Mexico (e.g. Ghomian et al., Energy, 2008). We consider hysteresis in the gas phase.
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Fault Zone CO; migration in the Miocene section offshore Texas (Gulf of Mexico): o

Base-case fault properties

¢ Porosity based on an ideal packing model of sand and 0 _
clay (Revil et al., JGR 2002) Porosity
. 3 MMUM-MMUM
o Capillary pressure curves were scaled based on = 1355
porosity and permeability using a Leverett-] function. % 1870
()

The reference curve is from UT Austin’s GoM atlas
(Trevino & Meckel, eds, 2017)
2990

e Cross fault permeability using the SGR-based
empirical relationship by Sperrevik et al. NPSSP
(2002). Anisotropy = 10.
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Fault Zone CO; migration in the Miocene section offshore Texas (Gulf of Mexico): 17

Base-case result

o After 200y, a small amount of CO; has traveled along the fault and into the first overlying reservoir (OR1). The CO;
saturation in OR; is almost 0, and no CO; is observed above.

o Hypothesis: Faults that partially offset a discontinuous caprock may act as partial vertical conduits. Updip migration
through the whole caprock interval is very unlikely.

CO, injection rate: 1 Mt/y
tinj = 30 y; tsim =200 y
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Next steps

1. Application of PREDICT to determine fault permeability

2. Upscaling of fault capillary pressure based on high-resolution material
distributions and invasion-percolation simulations

3. Upscaling of relative permeabilities in both end-member flow regimes

(viscous and capillary limits)
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