Induced fault slip: fast or slow?

Camilla Cattania

Assistant Professor, EAPS

In collaboration with Paul Segall May 26, 2022

Examples of induced seismicity in geo-energy projects

1

2006 Mw 3.4 Basel

Fault slip induced by decrease in effective stress

Frictional stability criteria

Rate weakening vs. rate strengthening:

$$\frac{\partial f_{ss}}{\partial V} \ge 0 \quad \qquad \text{Stable sliding}$$

$$\frac{\partial f_{ss}}{\partial V} < 0 \quad \qquad \text{Potentially unstable sliding}$$

Unstable sliding above critical nucleation length

Critical nucleation dimension

Similar dimensions can be found for:

- other frictional laws (e.g. Ampuero & Rubin, J. Geo. Res., 2008)
- rough faults (Tal, Hager & Ampuero, J. Geo. Res., 2018)

4

MIT Earth Resources Laboratory Annual Founding Members Meeting 2022

Evidence for seismicity triggered by aseismic slip Guglielmi et al, 2016

Modeling reproduces aseismic slip event

Slip weakening friction

Scale of aseismic slip comparable to nucleation length

How much aseismic slip could happen at a km-scale?

Roughness modulates fault stability

e.g. Cattania and Segall, 2021

Nucleation length decreases with normal stress:

(e.g. Ruina, 1983; Rubin and Ampuero, 2005) **Asperity** High σ Small nucleation length

Unstable Interseismically locked, breaks seismically (stick-slip) **Creeping patch** Low σ Large nucleation length

Conditionally stable Does not accelerate towards instability

100 m

Fault roughness enables extended creep

State of stress on a rough fault

Normal stress (MPa)

State of stress on a rough fault with injection

Localized aseismic slip expected to occur before any seismic activity

Implications:

- Reduced seismic release
- Slow slip can trigger delayed seismicity

Simulation of a simple seismic cycle

- Quasi-dynamic earthquake cycle simulator (FDRA)
- 2D plane-strain
- Elastic bulk
- Fault loaded by uniform shear stressing rate
- 20 MPa normal stress

Perturbed cycle

Uniform decrease in normal stress at 0.1MPa/yr

Decrease in recurrence interval, moment

MIT Earth Resources Laboratory Annual Founding Members Meeting 2022

Injection on a rough fault: slow slip, smaller earthquakes

Injection on a rough fault: slow slip, smaller earthquakes

Significant reduction in magnitudes

High b-value correlated with high pore pressure

Bachman et al. 2012 high b-value near injection

Normal stress heterogeneity → k heterogeneity

Weak fault patches experience earlier stress changes

 Pore pressure changes affect fault frictional stability

(opposite effect to Coulomb stress analysis)

- Pore pressure changes affect fault frictional stability
- Pore pressure perturbations on heterogeneous faults can give rise to

 (1) a large fraction of aseismic slip
 (2) a large number of small earthquakes

- Pore pressure changes affect fault frictional stability
- Pore pressure perturbations on heterogeneous faults can give rise to

 (1) a large fraction of aseismic slip
 (2) a large number of small earthquakes
- Including heterogeneous permeability modulated by fault roughness may additionally modify slip behavior

- Pore pressure changes affect fault frictional stability
- Pore pressure perturbations on heterogeneous faults can give rise to
 - (1) a large fraction of aseismic slip
 - (2) a large number of small earthquakes
- Including heterogeneous permeability modulated by fault roughness may additionally modify slip behavior

We need to develop models of induced seismicity that account for these effects

Couple them with more sophisticated geomechanical models

Test against observation of induced microseismicity

