MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Multicomponent elastic imaging: new insights from the old equations

Yunyue Elita Li^{*}, Yue Du, Jizhong Yang, and Arthur Cheng

SINGAPORE GEOPHYSICS PROJECT

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

OBN acquisition: 4C data

Elastic imaging is not widely applied

- Large computational cost compared with acoustic imaging
 - 5 times in runtime and memory in 2D
 - 9 times in runtime and memory in 3D
- Deteriorated image for converted waves
 - Polarity reversal at normal incidence
 - Complicated, cumbersome, and add hock

Industry standard imaging algorithm

PP reflection image

Converted wave imaging appears noisier, less coherent, and challenging for joint interpretation
 Images are obtained with 5 times the computation and memory cost of the acoustic images

Proposed imaging algorithm

PP reflection image

Converted wave imaging shows consistent geological features with higher resolution
 Imaging cost are reduced by 60% in computation and 80% in memory

PS reflection image

Outline

- Elastic wave equations
 - Revisit of the elastic wave equations
 - A new set of separated P- and S-wave equations
- The elastic imaging condition
 - PP and PS images from inverse problem formulation
- Discussions and conclusions

Seismology 101: elastodynamic system

• Linear, isotropic, elastic medium (Aki and Richards, 1980)

Newton's Law:

- u_i particle displacement
- $au_{i\,i}$ element of the stress tensor

 f_i force

Hooke's Law:

 $au_{ij} = \lambda \delta_{ij} \partial_k u_k + \mu (\partial_i u_j + \partial_j u_i) \qquad
ho, \lambda, \mu \quad$ density and Lame constants

Need to propagate (and store) 5 fields in 2D, and 9 fields in 3D
Cannot interpret the P- and S-wave directly from the equations

Seismology 101: mode conversion

Are these mode conversion types unconditional?

✓ New set of equations: clear mode conversion and its condition

New set of separated P- and S-wave equations

 \leftarrow Source term

← P-wave interacts with V_p boundary
 ← P-wave interacts with V_s boundary
 ← S-wave interacts with V_s boundary

Li et. al., submitted to Geophysics, 2018

New set of separated P- and S-wave equations

Li et. al., submitted to Geophysics, 2018

Insights from the equations

 $\ddot{P} - \alpha \nabla^2 P = P \nabla^2 \alpha + 2 \nabla \alpha \cdot \nabla P - 2 P \nabla^2 \beta - 2 \nabla \beta \cdot \nabla \times \mathbf{S} + \nabla \cdot \mathbf{f}$ $\ddot{\mathbf{S}} - \beta \nabla^2 \mathbf{S} = \nabla \beta \cdot \nabla \mathbf{S} - (\nabla \beta) \times (\nabla \times \mathbf{S}) + 2(\nabla \beta) \times (\nabla P) + \nabla \times \mathbf{f}$

New set of equations: coupled but separated for P- and S-propagations in heterogeneous (Lamé) media (constant density)
 Wave-medium interactions can be directly interpreted
 Mode-conversion only happens at S-wave discontinuities!
 Discontinuities only in V_p are transparent to S-wave

Elastic simulations in heterogeneous media

Outline

- Elastic wave equations
 - Revisit of the elastic wave equations
 - A new set of separated P- and S-wave equations
- The elastic imaging condition
 - PP and PS images from inverse problem formulation
- Discussions and conclusions

Imaging condition

image = source wavefield meets scattered wavefield

- ♦ Wavefields only recorded on the boundary
 - ♦ Source: source signature
 - ♦ Scattered: receiver recordings
- \diamond How does the wavefields meet?
 - \diamond P-wave: scalar
 - \diamond S-wave: vector

- ✓ Approximate wavefields by solving wave equations
 - ✓ Source: forward propagation
 - ✓ Scattered: backward propagation
- ✓ Formulate imaging problem as an inverse problem
 - ✓ P-wave: take a gradient
 - ✓ S-wave: take a curl

Discussions and conclusions

- ➢ We derive a new set of coupled, but separated wave equations for P- and S-wave propagation
- This work provides a rigorous theoretical basis for the vector image conditions
- Better interpretation of the PP and PS images based on fundamental wave physics

Limitations

- Constant density assumption
 - P- and S-waves are fully coupled at all density discontinuities
 - Images are contaminated with density contrasts
- P- and S-data separation in the recorded data
 - Potential data are needed for this formulation
 - Inverse problem to solve for the separated fields

Acknowledgements

- Economic Development Board for supporting the Petroleum Engineering Program
- MOE Tier 1 Grants R-302-000-165-133 and R-302-000-182-114