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Goals of this presentation

1. Explain a novel approach to uncertainty
quantification (UQ) that avoids dubious
assumptions about linearity and Gaussianity.

2. lllustrate how assumed non-Gaussian distributions
of prior model properties and measurements
propagate to travel time.

3. Stimulate your feedback about what UQ would be

desirable to provide for seismic imaging.
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A new approach to image UQ

In the WKBJ approximation, Claerbout’s condition for

image value /[x] at a 3D point x reduces to

I[x] = RIx]op[T[x] - 7,[x]],
where R[x] is the reflection coefficient and
T. and 7, are the from-source and to-receiver travel
times (Scales 1995 Ch. 7). (The pulse
Oy[t] = [dvF[v]exp[-2mivt]

describes the signal bandwidth and attenuation.)
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A new approach to image UQ... .

Any R[X] uncertainty appears proportionally in /[x].
Uncertainty in T .[x] — T[] affects /[x] very nonlinearly,
potentially shifting or creating spurious features.
Classical UQ assumes all uncertainty is multivariate
Gaussian ---mainly to make analysis and computation
tractable; in the present work we tentatively explore

non-Gaussian uncertainty, using simplified stochastic

simulation of t[x].
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A simple T model...
At depthzy<z<z,+

Az, 7]z], the ray angle
i|z], raypath constant

p and velocity v[z] are

20 < |
related by
S . S .
visini=vyisiniy=p,
viseci=017/0z

layer thickness

. . . . Az |
implyingambiguity

in the z-increment

Az 907/0z. W Azvcosi==025
L. AzNcosi==1.
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A simple T model... Arisosuraces

[fromzytozy+ Nz
yields A7 =
(Az/Av)AIn tan[i/2].

Uncertainty in model
/\z orin ray path e 0
p, i are all plausible
candidates to
account for z-

uncertainty.
B pAz In[tan[i/2)/tan[i0/2])/(sin[i]-sin[i0]) == 0.5

L pAz In[tan[i/2)tan[i0/2])/(sin[i]-sin[i0]) == 1. 2 andle 15
. i
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Offset increment Ax isosurfaces

Include offset x

| from z5to z, +
Azvyields pAx =
-(Az/ Av)/Acos|i].

Uncertainty in

model Azorin  iiness
ray path

p, i affect Ax

differently than

0.0

N\T. 0.0 ‘
B -Az(cos[i]-cos[i0])/(sin[i]-sin[i0]) == 0.5°-° \ \
L. —Az(cos[i]-cos[i0])/(sin[i]-sin[i0]) == 1.

ray angle

orth [ -Az(cosi]-cos[i0])/(sin[il-sin[i0]) == 2. ,
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“Why look at isosurfaces?”

The previous nonlinear relationshipsconstitute a vector
(Az/p, Ax,A\z) = (Az/p/Av)/\[(csc[i],sin[i],cos[i])di.
More generally, consider a multivariate random smooth
nonlinear transformation and its covariance,
X = Xj[Y] = (X/> +-Ijk(yk_<yk>) + ijm(yk_<yk>)(ym_<ym>)+ y

cov;[x] = Jycovinlylim + ...

A differential geometry analysis of curvilinear-coordinate

isosurface intersectionscan reveal search trajectories to

optimally update (A 7/p, A x,/\z) [Fournier et al. 2015: Decision

Guidance. International Application No. PCT/US2015/016036].
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(compaction sorted)

Reflector layer thickness Az =~ LogN[1024,512]

Simulate random depth increments
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Simulate random ray parameters

Histogram of 512 samples of pv ==sini
sin i & B[a,], {sin i} = 1/3, std[sin i] = 1/9]
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Simulate random v profiles
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Travel time from stochastic simulation

Sumof A7
fromz,;=0
to full depth
may recover
some
Gausianity
(Central
Limit

Theorem).
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Conclusions and non-conclusions

1. Mathematical evidence (and experience) = uncertainty
propagation from data to modeling to imaging involves
significant nonlinearity.

2. Differential geometry analysis of idealized models can
optimize update of measurements and/or model properties.

3. Simplisticstochastic simulation with non-Gaussian
distributionscan provide travel-time (and eventually image)
distributionsto compare with real-world results. Markov-

chain Monte-Carlo will improvereliable inference.
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