What kind of uncertainty quantification is useful for seismic imaging?

Aimé Fournier

Research Scientist,
Department of Earth, Atmospheric and Planetary Sciences
In collaboration with L Demanet and MTC Li
2016 Annual Founding Members Meeting
May 18, 2016

Massachusetts
Institute of
Technology

Goals of this presentation

- Explain a novel approach to uncertainty
 quantification (UQ) that avoids dubious
 assumptions about linearity and Gaussianity.
- 2. Illustrate how assumed non-Gaussian distributions of prior model properties and measurements propagate to travel time.
- 3. Stimulate your feedback about what UQ would be desirable to provide for seismic imaging.

A new approach to image UQ

In the WKBJ approximation, Claerbout's condition for

image value I[x] at a 3D point x reduces to

$$I[\mathbf{x}] = R[\mathbf{x}]\delta_{b}[\tau_{s}[\mathbf{x}] - \tau_{r}[\mathbf{x}]],$$

where $R[\mathbf{x}]$ is the reflection coefficient and

 $\tau_{\rm s}$ and $\tau_{\rm r}$ are the from-source and to-receiver travel

times (Scales 1995 Ch. 7). (The pulse

$$\delta_{b}[t] = \int d\nu F[\nu] \exp[-2\pi i\nu t]$$

describes the signal bandwidth and attenuation.)

A new approach to image UQ...

Any R[x] uncertainty appears proportionally in I[x].

Uncertainty in $\tau_s[\mathbf{x}] - \tau_r[\mathbf{x}]$ affects $I[\mathbf{x}]$ very nonlinearly, potentially shifting or creating spurious features.

Classical UQ assumes all uncertainty is multivariate Gaussian ---mainly to make analysis and computation tractable; in the present work we tentatively explore non-Gaussian uncertainty, using simplified stochastic simulation of $\tau[\mathbf{x}]$.

A simple τ model

Consider a stack of *n*

 $\rightarrow \infty$ horizontal,

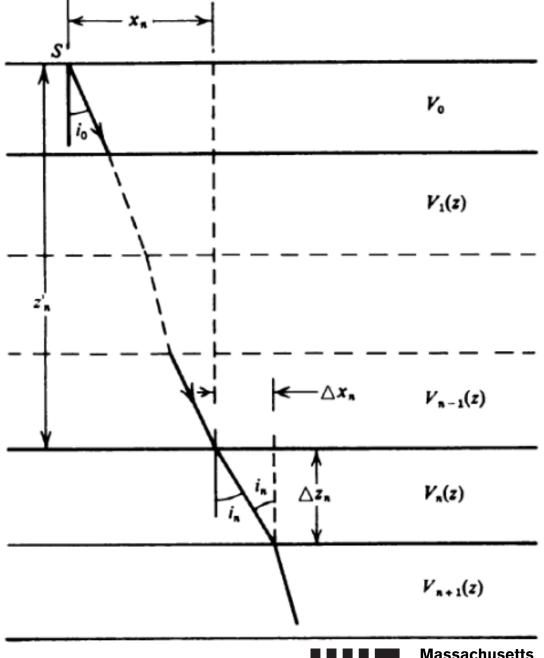
piecewise-uniform

layers between z_0 and

 $z_0 + \triangle z$ (following

Telford et al. 1990

§4.3.2)...



A simple τ model...

At depth $z_0 < z < z_0 +$ $\triangle z$, $\tau[z]$, the ray angle i[z], raypath constant p and velocity v[z] are related by $v^{-1}\sin i = v_0^{-1}\sin i_0 = p$,

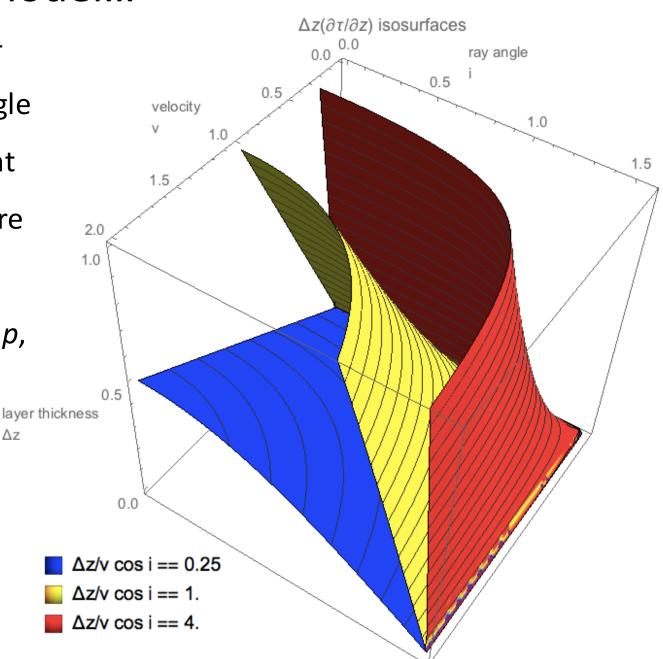
$$v^{-1}\sin i = v_0^{-1}\sin i_0 = p_i$$

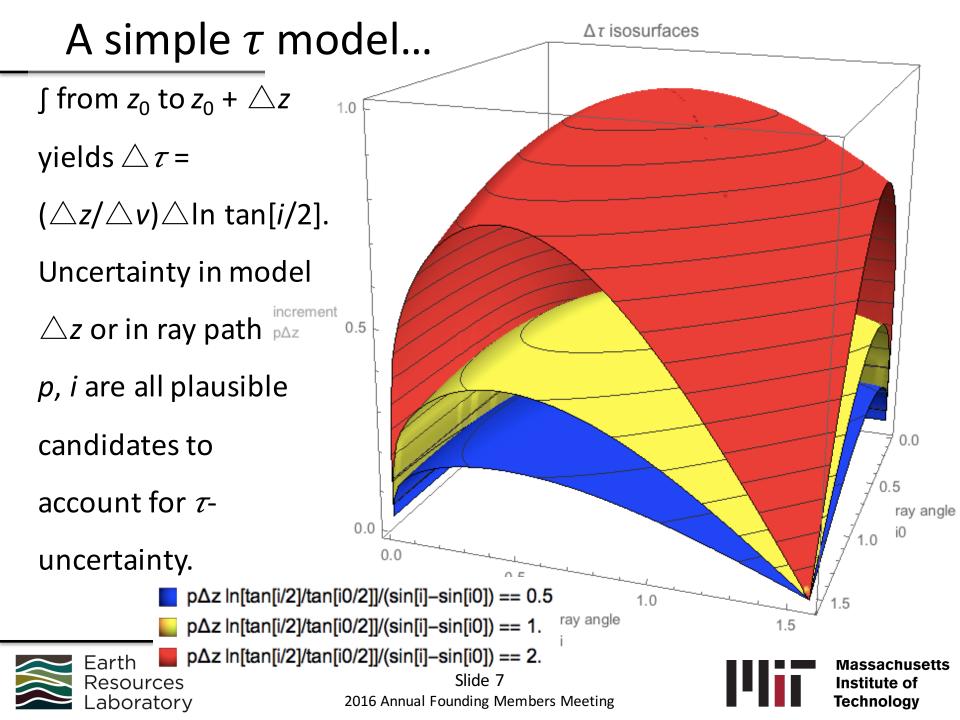
$$v^{-1}$$
sec $i = \partial \tau / \partial z$,

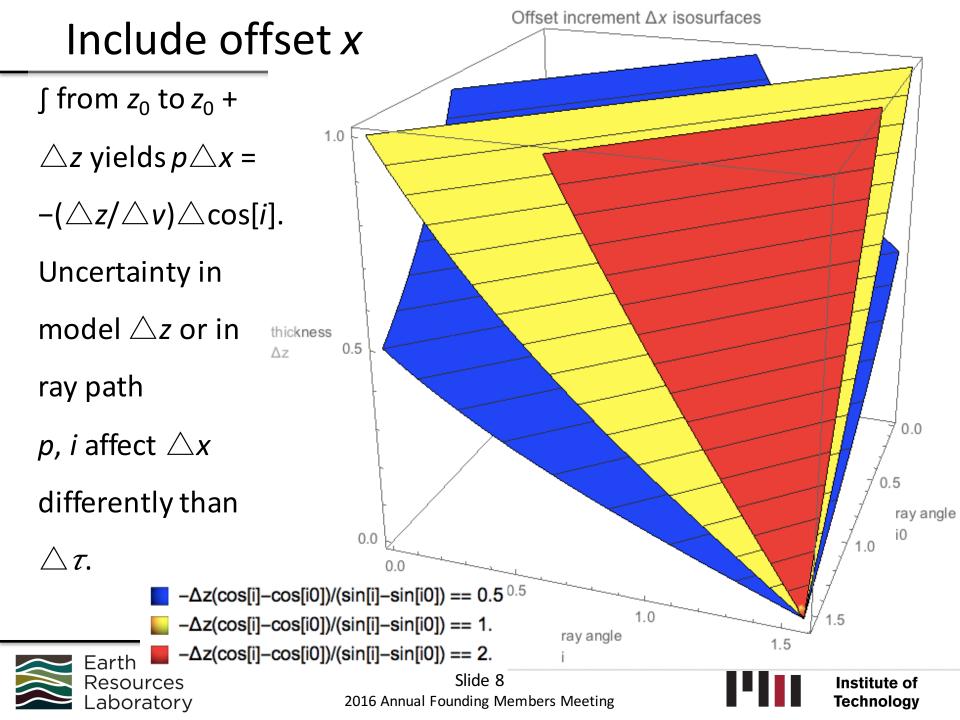
implying ambiguity

in the au-increment

$$\triangle z \partial \tau / \partial z$$
.







"Why look at isosurfaces?"

The previous nonlinear relationships constitute a vector

$$(\triangle \tau/p, \triangle x, \triangle z) = (\triangle z/p \triangle v) \triangle \int (\csc[i], \sin[i], \cos[i]) di.$$

More generally, consider a multivariate random smooth nonlinear transformation and its covariance,

$$x_{j} = x_{j}[\mathbf{y}] = \langle x_{j} \rangle + J_{jk}(y_{k} - \langle y_{k} \rangle) + H_{jkm}(y_{k} - \langle y_{k} \rangle)(y_{m} - \langle y_{m} \rangle) + ...,$$

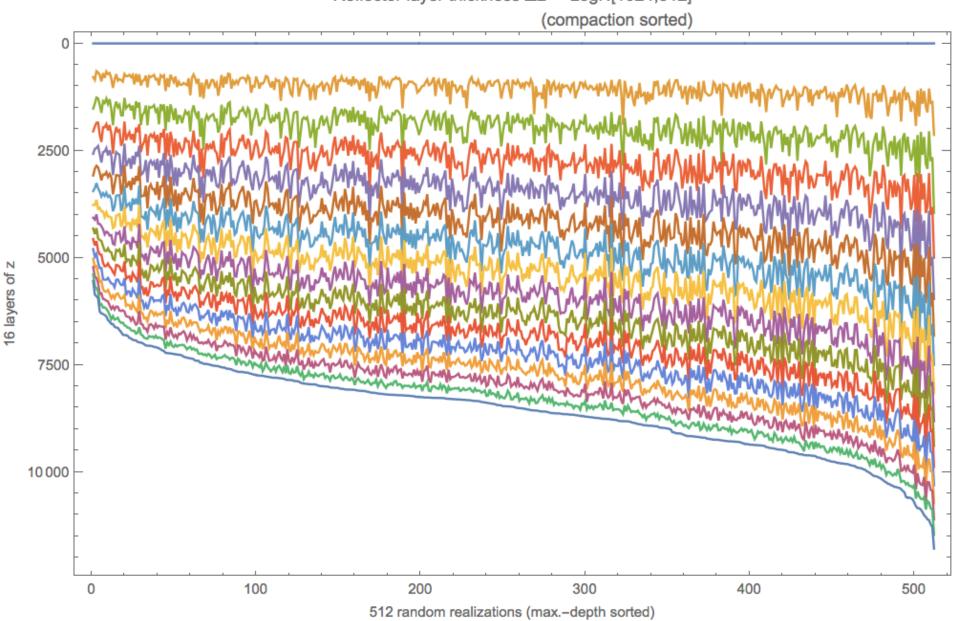
$$cov_{ij}[\mathbf{x}] = J_{jk}cov_{km}[\mathbf{y}]J_{im} + ...$$

A differential geometry analysis of curvilinear-coordinate isosurface intersections can reveal search trajectories to optimally update $(\triangle \tau/p, \triangle x, \triangle z)$ [Fournier et al. 2015: <u>Decision</u>

Guidance. International Application No. PCT/US2015/016036].

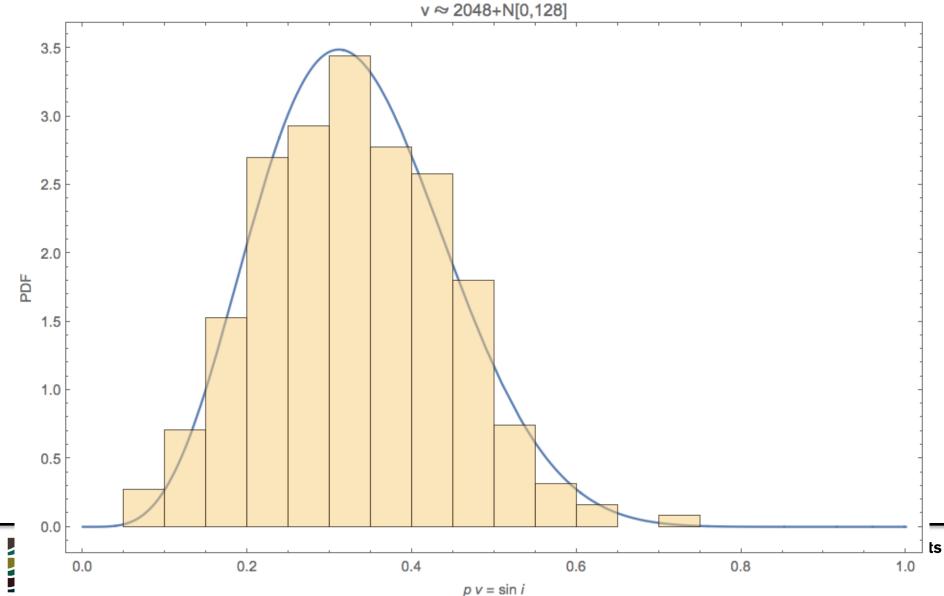
Simulate random depth increments

Reflector layer thickness Δz ≈ LogN[1024,512]

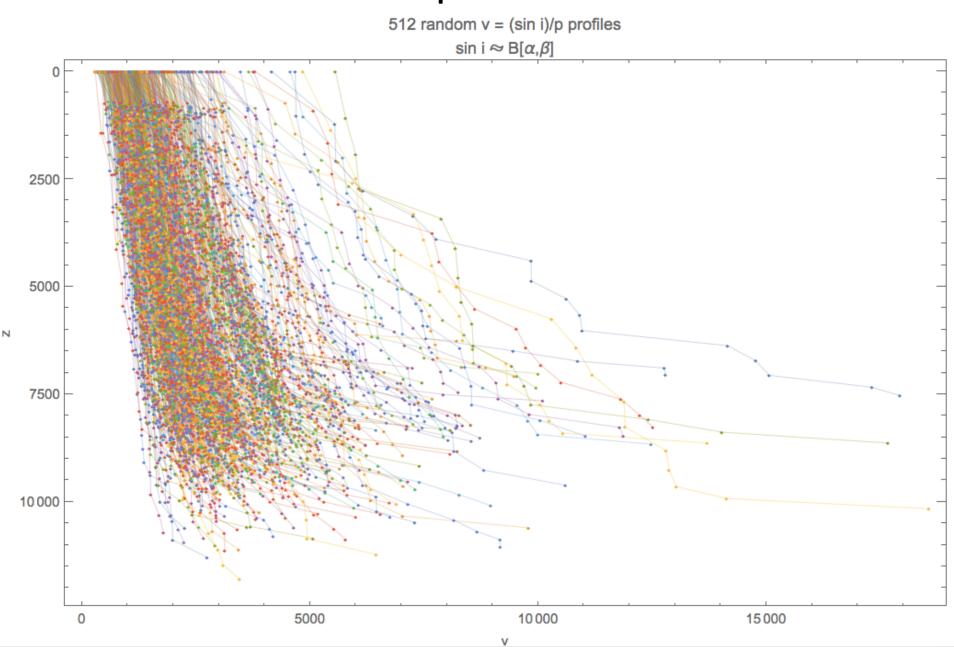


Simulate random ray parameters

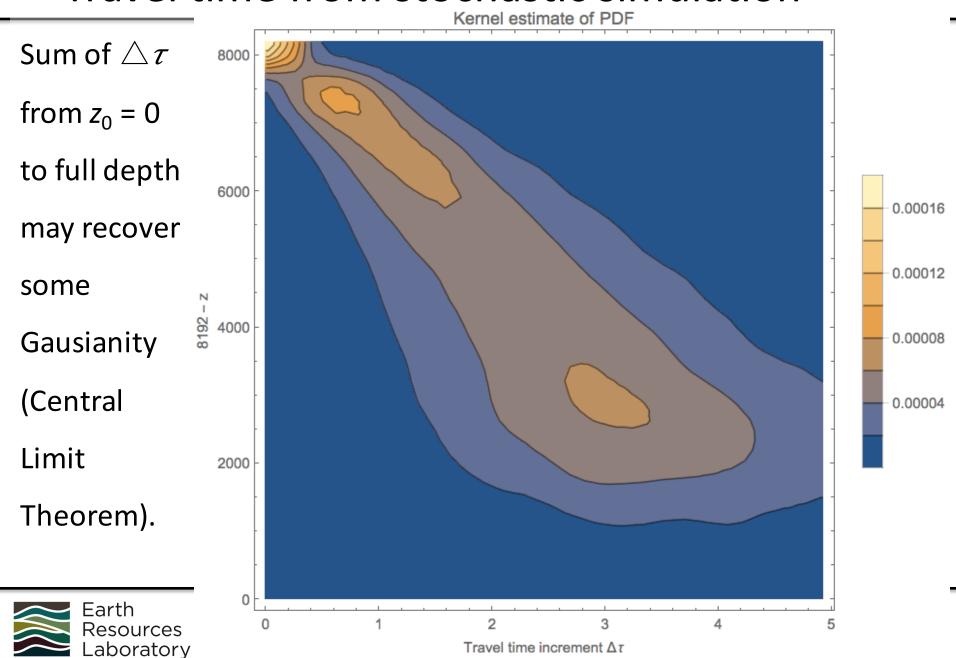
Histogram of 512 samples of p v == sin i sin i \approx B[α , β], \langle sin i \rangle = 1/3, std[sin i] = 1/9]



Simulate random *v* profiles



Travel time from stochastic simulation



Conclusions and non-conclusions

- Mathematical evidence (and experience) ⇒ uncertainty propagation from data to modeling to imaging involves significant nonlinearity.
- 2. Differential geometry analysis of idealized models can optimize update of measurements and/or model properties.
- 3. Simplistic stochastic simulation with non-Gaussian distributions can provide travel-time (and eventually image) distributions to compare with real-world results. Markov-chain Monte-Carlo will improve reliable inference.

