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Can We Use Noise-Source Records for Imaging?
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Marmousi II Impedance Model

Drill Noise from Gradl et. al., 2012

Noise source:
is uncontrollable and continuously
inputs energy.
can be heavily correlated in time,
i.e., its signal is non white.

Imaging:
raw records is not possible because
of unknown noise signature.
requires the subsurface Green’s
function that are not contaminated
by noise.
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Yes, Ask FBD for Help!
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...just using a cross-correlation is not sufficient
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Blind Deconvolution
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This talk:
extraction of the Green’s functions
without any knowledge of the noise
signature by deconvolution.
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From here on...

s(t) : noise source signature in time
S(z) : noise source signature after z-transform
di(t), Di(z) : recorded noise at the ith receiver, with length T
gi(t), Gi(z) : subsurface Green’s function at the ith receiver, with length τ

convolution in time ∗
cross-correlation in time ⊗
assume T ≥ 10τ
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Overview

1 Multichannel Blind Deconvolution
Non-uniqueness

2 Two Focusing Constraints
Maximally White
Maximally Front-loaded

3 Focused Blind Deconvolution

4 Numerical Experiments

5 Conclusions
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Convolutional Model
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G3(z)D3(z)

*

Green’s Functionsrecorded data

noise source
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Convolutional Model

S(z)
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True Solution

g1(t)d1(t)

g2(t)d2(t)

g3(t)d3(t)

s(t)
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Least-squares Blind Deconvolution

Definition

Q(s, gi) =
∑

i

∑
t
{di(t)− [s ∗ gi ](t)}2 + α

∑
i

∑
t

|t|
τ

g2
ii (t)︸ ︷︷ ︸

Maximally White

+ β
∑

i

∑
t

|t|
τ

g2
i (t)︸ ︷︷ ︸

Maximally Front-loaded

(ŝ, ĝi) = arg min
s,gi

Q
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Non-uniqueness
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Non-uniqueness

Φ(z) 6= 1 Can Be Exchanged

S(z)Φ−1(z)

G1(z)Φ(z)D1(z)

*

G2(z)Φ(z)D2(z)
*

G3(z)Φ(z)D3(z)

*
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Non-uniqueness

Undesired Solution 1
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Non-uniqueness

Undesired Solution 2
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Non-uniqueness

Undesired Solution 3
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Two Focusing Constraints
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Two Focusing Constraints

Summary: Indeterminacy

Key Ideas
For most of the physical systems, the Green’s functions don’t share the common roots,
i.e., they are coprime.
This constraint is sufficient to uniquely solve the multichannel blind deconvolution
problem (Xu et al., 1995).
FBD is a novel implementation of the BD problem with this constraint.

Blind Deconvolution
Di(z) = [GiS](z) = {[GiΦ][SΦ−1]}(z)

Indeterminacy: Φ(z)
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Two Focusing Constraints

Constraint: The Estimated Green’s Functions Shouldn’t Have a Common
Root

S(z)����XXXXΦ−1(z)

G1(z)���HHHΦ(z)D1(z)

*

G2(z)���H
HHΦ(z)D2(z)

*

G3(z)���H
HHΦ(z)D3(z)

*
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Two Focusing Constraints

Summary: Indeterminacy
Blind Deconvolution
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Two Focusing Constraints Maximally White
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Two Focusing Constraints Maximally White

True Solution: Amplitude Spectrum of the Green’s Functions

g1(t)d1(t)

g2(t)d2(t)

g3(t)d3(t)

s(t)

focus=1.55

[g1 ⊗ g1](t)
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Two Focusing Constraints Maximally White

Undesired Solution 1: Amplitude Spectrum of the Green’s Functions
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Two Focusing Constraints Maximally White

Undesired Solution 2: Amplitude Spectrum of the Green’s Functions
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Two Focusing Constraints Maximally White

Undesired Solution 3: Amplitude Spectrum of the Green’s Functions

s(t)

g1(t)d1(t)

g2(t)d2(t)

g3(t)d3(t)

focus=2.3

[g1 ⊗ g1](t)
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Two Focusing Constraints Maximally White

The True Green’s Functions Are…

Maximally White, so
their auto-correlations are maximally focused at t = 0.

Maximally Front-loaded, so
their phase spectra show minimal variation.
they are maximally focused at t = 0.
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Two Focusing Constraints Maximally White

Least-squares Blind Deconvolution

Definition

Q(s, gi) =
∑
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Two Focusing Constraints Maximally White

Adding Focusing Constraint

Definition
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Two Focusing Constraints Maximally White

Summary: Maximally White
Blind Deconvolution

Di(z) = [GiS](z) = {[GiΦ][SΦ−1]}(z)
Indeterminacy: Φ(z)

Indeterminacy: |Φ(z)| Indeterminacy: arg[Φ(z)]

Constraint:
Gi(z) should be maximally white
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Two Focusing Constraints Maximally Front-loaded
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Two Focusing Constraints Maximally Front-loaded

True Solution: Phase Spectrum of the Green’s Functions

g1(t)d1(t)

g2(t)d2(t)

g3(t)d3(t)

s(t)

focus=0.39

arg[G1](z)
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Two Focusing Constraints Maximally Front-loaded

Undesired Solution 1: Phase Spectrum of the Green’s Functions
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Two Focusing Constraints Maximally Front-loaded
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Two Focusing Constraints Maximally Front-loaded

The True Green’s Functions Are…

Maximally White, so
their auto-correlations are maximally focused at t = 0.

Maximally Front-loaded, so
their phase spectra show minimal variation.
they are maximally focused at t = 0.
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Two Focusing Constraints Maximally Front-loaded

Least-squares Blind Deconvolution
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Two Focusing Constraints Maximally Front-loaded

Summary: Maximally Front-loaded
Blind Deconvolution

Di(z) = [GiS](z) = {[GiΦ][SΦ−1]}(z)
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Indeterminacy: |Φ(z)| Indeterminacy: arg[Φ(z)]

Constraint:
Gi(z) should be maximally white
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Gi(z) should be maximally front-loaded
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Numerical Experiments
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Numerical Experiments
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Conclusions

Focused Interferometric Blind Deconvolution
Resolves the indeterminacy due to |Φ(z)|, by choosing the Green’s functions that are
maximally white.

Focused Phase Retrieval
Resolves the indeterminacy due to arg[Φ(z)], by choosing the Green’s functions that
are maximally front-loaded.

Focused Blind Deconvolution
Resolves the indeterminacy due to Φ(z), such that the Green’s functions are coprime,
i.e., they don’t share common roots.
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Thank You! Any Questions?
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