MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018



## Novel Approach For 1D Resistivity Inversion Using a Systematicallydetermined Optimum Number Of Layers

**Ammar Alali** GRADUATE STUDENT - EAPS

## **Motivation**



- Inverting the apparent resistivity to obtain a "true" resistivity model entails *a priori* selection of the number of layers. Consequently, one can obtain different models for the *same* input apparent resistivity.
- Therefor, we need a solution to select the optimum number of layers a priori



### **Proposed Solution**



- A method to systematically determine the number of layers used in VES inversion.
- Use self-consistent, and stable in terms of convergence inversion algorithm.



#### Integrated Resistivity Model



### Outline

Background Methodology Synthetic Results Field Results Conclusion

## Background



 Vertical electrical sounding (VES) is a geophysical method to determine the structure of the subsurface.

• Schlumberger, Wenner, Dipoledipole Configurations.



Illustration of VES configurations.

### **Vertical Electrical Sounding**



The data collected by the electrodes is voltage. The apparent resistivity,  $(\rho a)$ , is an Ohm's-law ratio of measured voltage V to applied current l, multiplied by a geometric constant k which depends on the electrode array:

$$\rho_a = k \frac{v}{I} (\Omega \cdot m).$$



### Methodology Forward Model *Two Steps Approach* Inversion

### **Forward Model**



Electric potential at a distance r from a point source of current I on the surface of a horizontally stratified earth is given as :

$$V(r) = \frac{I\rho_1}{2\pi} \left[ \frac{1}{r} + 2 \int_0^\infty B(\lambda) J_0(\lambda r) \, d\lambda \right].$$

Where:

*r* is the distance between the current source and the potential measuring station. *V(r)* is the potential measured at a point on the surface at a distance *r*. *B(\lambda)* is the resistivity kernel function for an n- layered earth.

 $P_1$  is the resistivity of the upper layer.

 $J_0$  is the Bessel function of zero order.

## **Two-Steps Approach**



### **Inversion Problem**



### Inversion



To solve for:

$$\mathcal{A}(X) = b.$$

The inversion scheme used is a damped non-linear least square (NLLS).

$$\delta X = (\mathcal{A}^T \mathcal{A} + \propto I)^{-1} \mathcal{A}^T \delta b.$$

*L2*-norm of misfit to quantify the difference and minimize it.

### **Ridge Trace Regression**



# Ridge trace determines which damping value to use for each parameter individually.

$$\tau = |\frac{\delta X_i}{\delta \alpha_i}|.$$

 $\boldsymbol{\alpha}$  is damping parameter

### Minimum $\propto$ for which $\tau < \tau_{\text{threshold}}$ .

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018



11

### **Number of Layers**





### Graphic illustration of integrated resistivity curve of the fixed-layer

- The slope at each point in the curve is calculated (f'(x)).
- The point of changing slope will be interpreted for a layer boundary that represents a new layer in the model with a different true resistivity value.

Summed Resistivity Values



### **Synthetic Examples**

Case 1 Schlumberger Array Case 2 Schlumberger Array

## **Case 1 Schlumberger Array**



### Forward Model

| Туре                                                                  | Input         |
|-----------------------------------------------------------------------|---------------|
| ρ [Ω·m]                                                               | 100, 150, 200 |
| Thickness [m]                                                         | 5,7, ∞        |
| Number of measurements (expand electrode separations logarithmically) | 9             |

### **Software Interface**



### The user has the option to select between two different acquisition configurations.

| 🛑 😑 💿 Variable T | hickness 1D Resistiv      | vity Inversion |
|------------------|---------------------------|----------------|
| Auto 1D          | Electrical Resistivity    | Inversion      |
|                  | Import Data               |                |
| case1.           | txt                       |                |
| (                | Schlumberger Array        |                |
|                  | Tau Threshold             |                |
| (                | 0.4                       |                |
|                  | Plot Apparent Resistivity |                |
|                  | Run Inversion             |                |
|                  | Save Result               |                |

# Schlumberger Apparent Resistivity

### Plot of the apparent resistivity for *case 1*.



MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2018

Earth Resources Laboratory

### **Fixed-Thickness Inversion**

Earth Resources Laboratory

Fixed-thickness inversion for case 1. Top shows RMSE. Bottom left is data and inverted fit with RMSE. Bottom right is the resistivity model.



## **Detecting Number of Layers**



### Integrated resistivity model for *case 1*. The blue stars indicate the start of each new layer.



### **Detecting Number of Layers**

Comparison between the detected layer boundaries, derived from the "integrated resistivity model" and in contrast to the "fixedthickness resistivity model," to the actual boundaries from the synthetic model for the first case.



**Phi** 

### **Variable-Thickness Inversion**

Earth Resources Laboratory



### **Final Inverted Model**



## Comparison between synthetic (data) and inverted model.

| Туре          | Input Output  |               |  |
|---------------|---------------|---------------|--|
| ρ [Ω·m]       | 100, 150, 200 | 100, 150, 197 |  |
| Thickness [m] | 5, 7, ∞       | 5, 6.5, ∞     |  |
| Data RMSE     |               | 0.00%         |  |



## **Case 2 Schlumberger Array**



### Plot of the apparent resistivity for *case 2*.



### Forward Model

| Туре                   | Input                |  |
|------------------------|----------------------|--|
| ρ [Ω·m]                | 1000, 2000, 200, 500 |  |
| Thickness [m]          | 10, 20, 30, ∞        |  |
| Number of measurements | 18                   |  |

### **Fixed-Thickness Inversion**



### Fixed-thickness inversion for case 2.



### **Detecting Number of Layers**



Comparison between the detected layer boundaries, derived from the "integrated resistivity model" and in contrast to the "fixed-thickness resistivity model," to the actual boundaries from the synthetic model for the second case.



### Variable-Thickness Inversion



#### The result of the variable-thickness inversion, *Case 2*.



 $\tau_{threshold} = 0.4$ Random Noise 0% RMSE = 0.05%

### **Final Inverted Model**



Earth Resource Laborato

## Comparison between synthetic (data) and inverted model with:

- Zero noise.
- 5% Gaussian noise.
- 20% Gaussian noise.

### **Inversion Result**



Inversion Results: Comparison between input parameters, inverted parameters without noise and with added noise.

| Туре         | Input                | Output without noise | <b>Output with 5% noise</b> | Output with 20%<br>noise |
|--------------|----------------------|----------------------|-----------------------------|--------------------------|
| ρ [Ω·m]      | 1000, 2000, 200, 500 | 999, 2017, 173, 789  | 1003,2035,163,850           | 1000,2007,165,970        |
| Thickness[m] | 10, 20, 30, ∞        | 10, 19.8, 29.6, ∞    | 10, 19.7, 29.5, ∞           | 10, 20.2, 29.2, ∞        |
| Data RMSE    |                      | 0.05%                | 0.08%                       | 0.20%                    |



### **Field Data Example**

### **Roseau Watershed of Saint Lucia**



Geographical location of Roseau Watershed in Saint Lucia (King and Cole, 2008).





## Geology





### Site Selection:

- 1) High porosity and permeability.
- 1) A normalized chargeability value close to zero indicates a near clayfree zone.
- 1) High Resistivity (200 3000  $\Omega$ ·m).

Geological map of Roseau (Vanard) region, prepared by Rebecca Rock (Morgan et al., 2013).

# Roseau Watershed of Saint Lucia



#### Elevation map with sounding locations along Roseau 10 line.



## **Apparent Resistivity**



Plot of current spacing (AB/2) and apparent resistivity for Roseau 10-600 VES survey in Saint Lucia.



### **Fixed-Thickness Inversion**



#### Fixed-thickness inversion.



### The integrated resistivity for Roseau10-600 VES.



### Variable-Thickness Inversion





 $\tau_{threshold} = 0.4$ Field Data RMSE = 5.26%

### **Final Inverted Model**

Earth Resources Laboratory

### Final result after tens of trials that lasted for hours (2014).





Our Result.

### **Different Models**





## Conclusion



- VES Variable thickness inversion is the best solution to resolve the subsurface and it requires number of layers.
- We have demonstrated a systematic 2-steps approach to determine the number of layers.
- The proposed approach is at least 100 times faster than the alternative methods.
- A similar method can be implemented on other configurations like Dipole-dipole array.



## Thank you

**Questions ?** 



$$\rho_{as} = \pi \frac{L^2}{I} \left( -\frac{\mathrm{dV}}{\mathrm{dx}} \right).$$

- M,N Potential electrodes
- A,B Current electrodes
- V Measured voltage difference (M & N)
- I Electrical current
- X Measuring distance from center of line.

### Wenner Array





- M,N Potential electrodes
- A,B Current electrodes
- V Measured voltage difference (M & N)
- I Electrical current

$$\rho_a = 2\pi a \left(\frac{V}{I}\right).$$