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Near-surface

@ Few hundreds of meters below
the surface (~ 500 m).

@ Direct: Near-surface resources

@ Groundwater: Civil
engineering; mineral resources

@ Indirect: Near-surface imaging
required for deep prospect

resources @ Near-surface schematics
@ Statics correction
@ Oil exploration
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@ Statics correction useful for

focusing seismic reflection
@ Near-surface challenges

energy
@ rugged topography; large
velocity variations; hidden
layers
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Stack: Seismic only
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Joint inversion philosophy

@ Subsurface geology: rock grain properties: physical, chemical,
biological, etc. Their structures differ in dimensions: 1D, 2D
or 3D.

@ [he more we know about a grain of rock the better for us
identifying it uniquely.

@ Unfortunately, geophysics only focuses on physical properties;
and many of geophysical surveys just interpret a single
physical property.
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Joint inversion philosophy

@ [ herefore joint inversion philosophy suggests the use of

multiple complementary geophysical data to improve on the
unique identification of the subsurface.

@ In my presentation today, although still few, | will show how
two different types of data set (seismic traveltime and
frequency EM data) can be used to improve the near-surface
Interpretation.
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Objective

@ Our objective in this study is to jointly invert 2D seismic data
with 1-D airborne data but to resolve a 2D seismic velocity
structure along with a 2D resistivity structure

@ Both seismic velocity and resistivity models should be
consistent in geological structures but different property
values

@ This effort will maximize the interpretation values of 2D
seismic and 1-D airborne EM surveys.
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Objective

@ [ herefore, our joint inversion problem is different from
previous such efforts in which multiple datasets are acquired in
the same 2D or 3D dimension

@ We shall demonstrate the approach by using a 2D seismic
dataset along with a Pseudo-2D frequency airborne EM
dataset (from multiple 1D data set). The same method can
be easily extended to 3D.
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Collocated velocity and resistivity models

@ Frequency airborne EM (FAEM) has similar N
principles with the TEM

o However data are acquired in air (regardless
of terrain)

@ Secondary vertical magnetic field measured
in the presence of primary of magnetic field
(limited resolution)

@ FAEM data in-phase or real component and V(xz) -
quadrature or imaginary component of * soom
complex vertical magnetic field V¥ Geophones
@ Seismic refraction tomography method: @ Schematic diagram of
o ) FAEM system and seismic
@ Seismic refraction tomography data: refraction experiment

traveltime recorded by the geophones
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Objective function

d(Me., ms) = Ee([|We(de — Ge(me))||* + 7e||Lme||?)
+&([[Ws(ds — Gs(ms))[1? + 7s[|Lms||?) + Al[t]]%. (1)

£e.&s: EM and seismic data misfit scaling factor: & = 1 — &,
L: regularization operator (derivative operator),

Te, Ts. resistivity and velocity smoothing trade-off parameters,
We. Ws: EM and seismic traveltime data weights,

t.\: cross-gradient and its weight,

ms: 2D slowness model,

Gs(ms): calculated traveltime data on ms,

me pseudo-2D resistivity model,

Ge(me): calculated pseudo-2D EM data on me:
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Cross-gradient constraints

A Vm,
« X »> A
1 log{mg) log(mg) ,’I' msc/ Mg,
Az !
log(mep, “\\‘ msp
- \Vl é‘(‘\me)
NER /" -
t(log(me), ms) = Vlog(me(x,y,z)) X Vms(x, y, z) (2)

t(x.2) = (8Iog(me(x,z))) (é‘)(ms‘-(x.z))) B (é)log(l?je(x.z))) (f)(ms(x.z))) (3)
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Iterative equation: conjugate gradient inversion method

(Ee (W, A)TW, A, + 1.LL) + AB,”B, 0 ) ( Amk+1>
Am

. Es ((ws As)Tws As -+ TSLTL) -+ )\BSTBS k+1

_ (B(Ee ((We A0)"WeAde — TeL'Lmg ) — ABeTt))

Es((ws As)TwsAds - TsLTLms) —KBsTt
k+1 k A k+1
<m1i+1) (meexp : rrllil )>' k=123,...,N.
Mg ms + Amyg

k+1

The model update (Amk o

X ) 1s found by the conjugate gradient (CG) method.
mS

B, and By arc resistivity and slowness model cross-gradient sensitivity matrices respectively.

The cross-gradient sensitivity is the partial derivative of ¢t with respect to the model parameters.

B 1s the model weighting
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Synthetic data example

True Resistivity model

True Velocity model
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@ High/Low velocity: 4000m /s: 1500m /s: 60m deep @ High/Low velocity: 946 Ohm-m; 21 Ohm-m; 60m deep
@ Seismic seometrv: 360 shots: 200 receivers @ EM geometry: 60 locations ; 20m separation; 50m
® g "y ' altitude; 7.93 coil separation
Shot-receiver offset range 0.5 to 1042.5m @ Frequency range 0.1Hz to 100kHz
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Raycounts and sensitivity analysis

True Velocity model True Resistivity model
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Anticipation from raycount and sensitivity analysis

@ Refraction seismology cannot image bottom of block:
@ when moving from high to low velocity medium

@ Frequency domain EM, inductive method, is more sensitive to
the conductive block than the resistive one, yet still provides a
wide spectrum

@ that helps to image the different parts of the blocks

@ We therefore anticipate the EM method will image the
resistivity structure

@ And communicate that to velocity model during the joint

Inversion
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Standalone inversion

True Velocity model

True Resistivity model
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Joint inversion parameter settings

@ From the objective function different weights have to be
supplied and balanced for optimum results
o Data weight W,, W;,set as unity (Synthetic)
o Data misfit weights &, = 0.7; & = 0.3
o Model weight, 5 = log(max(m.)) * min(ms); 3 = 0.0017.
@ Cross-gradient weight, A

@ We will appreciate the selection of A by performing the joint
inversion for 2 different initial models

o A: Initial model: 4 iterations (standalone) are done

o B: Initial model: Homogeneous

o A=0.1, 0.3, 1, 3, 300, 10000
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Joint inversion parameter settings

Initial Model

Initial model: after four iterations for separate inversion
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Joint inversion results: Cross-gradient weights
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Joint inversion parameter settings

Initial Model

Homogeneous initial model
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Joint inversion results: Cross-gradient weights
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Compare Initial models: homogeneous (up); 4 iterations (down)
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MISFIT PLOTS: Cross-gradient after 4 iterations

FAEM data misfit

Traveltime data misfit
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MISFIT PLOTS: Homogeneous initial model

FAEM data misfit

Traveltime data misfit
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Field data example

Flight Altitude
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Joint inversion parameter settings

@ Different weights used

o Data weight W,, Wi
@ Model weight, 5 = 0.001
@ Cross-gradient weight A = 10

Initial velocity model is built from traveltime picks

Standalone velocity model inversion is performed

o
o
@ T his velocity is empirically converted to resistivity model
@ Standalone resistivity model inversion is done

o

The joint inversion workflow begins: standalone models
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Standalone inversion: models
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Joint inversion: models
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Stack imaging workflow

@ Geometry correction to map 3D geometry along a 2D line
traverse.

Spherical divergence correction.
Decovolution with a prediction leg of 20 ms.

Spectral whitening.

Statics correction

@ Velocity from standalone traveltime tomography
@ Velocity from joint inversion

@ Dipping filter to remove coherent noise.
@ NMO correction

@ CMP stack and amplitude gain control
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Stack: Seismic traveltime statics

Seismic I Trace Headers I Hardcopy I
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Stack: joint inversion statics
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Conclusions

@ Perform joint inversion on different spatial geometries of
velocity and resistivity model

@ Traveltime data from 2D geometry and frequency airborne EM

data from multiple 1D from which pseudo-2D geometry is
formed.

@ Parameter settings are discussed

@ Performance depends on good initial velocity and resistivity
models

@ Remarkable improvement of the near-surface by joint inversion
compared to standalone results.
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Thank youl!

P Earth I BB Massachusetts
"\,\‘. Resources Slide 34 I I Institute of
ﬁ La boratory 2016 Annual Founding Members Meeting Technology



Conclusions

Fitterman, D.V., and W.L. Anderson, 1987, Effect of transmitterturn-off time on transient soundings:
Geoexploration, 24, 131-146.

Ingeman-Nielsen, T., and F. Baumgartner, 2006, CR1Dmod: a matlab program to model 1D complex resistivity
effects in electrical and electromagnetic surveys: Computers and Geosciences, 32, 1411-1419.

Meju, M.A., 1994, Geophysical data analysis: understanding inverse problem theory and practice. Society of
Exploration Geophysicists course notes series, No. 6, 1st edition: SEG.

Muja, M., and D.G. Lowe, 2009, Fast approximate nearest neighbors with automatic algorithm configuration:
VISAPP, 1, 331-340.

Nekut, A.G., 1987, Short note: direct inversion of time-domain electromagnetic data: Geophysics, 52, 1431-1435.

Wang, H.P., 2004, Digital filter algorithm of the sine and cosine transform: Chinese Journal of Engineering
Geophysics, 1, 329-335.

Ward, S.H., and G.W. Hohmann, 1987, Electromagnetic theory for geophysical applications, in M.N. Nabighian,
ed., Electromagnetic methods in applied geophysics v.1: SEG, 131-311.

Zhang, J., and F, D., Morgan, 1996, Joint seismic and electrical tomography. Paper presented at EEGS
Symposium on Applications of Geophysics to Engineering and Environmental Problems, Environ. and Eng.
Geophysics Society Keystone Colo.

Zhang, J., and M, N., Toksoz, 1998, Nonlinear refraction traveltime tomography: Geophysics, 63, 1726-1737.

Zhang, J., H. Zhang, E. Chen, Y. Zheng, W. Kuang and X. Zhang, 2014, Real-time earthquake monitoring using a
search engine method: Nature communications, doi: 10.1038/ncomms6664.

P Earth I BB Massachusetts
,"'\'l Resources Slide 35 I I Institute of
ﬁ La boratory 2016 Annual Founding Members Meeting Technology



