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Abstract 13 

Detection and analysis of small magnitude events is valuable for better characterization and 14 

understanding of reservoirs in addition to developing strategies for mitigating induced seismicity. 15 

Three-component receivers, which are now widely used, are commonly deployed in boreholes to 16 

provide continuous seismic data amenable to novel and powerful analysis. Using 17 

multicomponent continuous records of ground motion, we utilize two principal features of the 18 

direct P-wave arrival 1) linearity and 2) polarization in the direction along the ray path to the 19 

source region to detect small magnitude events undetectable by conventional methods. We 20 

evaluate the linearity of polarization and direction of arrival in the time and frequency domains 21 

by introducing the Spectral Matrix analysis method, and combine them into a scalar 22 

characteristic function that is thresholded for event detection purposes. We boost the signal-to-23 

noise ratio by stacking characteristic functions obtained at different 3-component receivers along 24 

an empirical moveout of a master event known to have occurred in an area of interest. This 25 
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allows us to detect smaller events and spatially tie them to a relatively small area around the 26 

large event. We apply our method to field data recorded at the Groningen gas field in the 27 

Netherlands. Our method detects all catalog events as well as several previously undetected 28 

events. 29 

30 



 

 

Introduction 31 

    The availability of large volumes of continuously recorded data provides an excellent 32 

opportunity for multifaceted and innovative seismic analysis. Using continuous data, 33 

seismologists can investigate new seismic phenomena, such as slow slip events (e.g., Shelly et al. 34 

2007) or ambient seismic noise (e.g., Shapiro and Campillo 2004). Continuous monitoring and 35 

the techniques associated with it, such as template matching methods to detect events, also helps 36 

us to understand subsurface processes associated with induced seismicity that accompanies 37 

hydraulic fracturing in areas of shale gas development (e.g., Skoumal et al. 2014), and other 38 

fields such as Engineered Geothermal Systems (EGS) (e.g., Templeton et al., 2020), and Carbon 39 

Capture and Storage (CCS). 40 

    Analyzing traditional seismic events originating in a reservoir remains a primary tool for 41 

characterizing reservoir processes so having a good algorithm for detecting such events is 42 

crucially important. To locate events, we first need to detect their signals within the continuously 43 

recorded data. Then we must pick the P- and S- wave arrivals so we can determine hypocenter 44 

locations and magnitudes of events. Many earthquake catalogs are populated with events that are 45 

detected and picked using conservative methods. However, in the context of monitoring to 46 

evaluate the evolution of the reservoir and possible seismic risk, we are typically interested in 47 

relatively small events that might not be detected by conventional amplitude based trigger 48 

systems. Detecting smaller magnitude events and therefore increasing the total number of 49 

detected events is beneficial for a better understanding of the reservoir system, evaluation of the 50 

state of stress of the subsurface, and measuring temporal changes in seismic activity for seismic 51 

risk management (e.g., Walters et al., 2015). 52 

    One of the most well known and widely used earthquake detection methods is the short-time 53 

average/long-time average (STA/LTA) (e.g., Allen 1978; Withers et al. 1998) method that is 54 

based on the abrupt change of the amplitude as a function of time. Since its invention, a number 55 



 

 

of improvements have been proposed (e.g., Akram and Eaton 2016), and other potentially better 56 

methods were introduced (Baillard et al. 2014; Langet et al. 2014). Because a lot of these 57 

methods depend on amplitude change, they may not perform well on data with a low signal-to-58 

noise ratio (SNR), where the onset of the direct P-wave from a small earthquake is often buried 59 

within noise. Template matching, based on cross-correlating a continuous waveform with given 60 

template waveforms, is often used in such situations because it is much less sensitive to noise 61 

(e.g., Gibbons and Ringdal 2006; Skoumal et al. 2014; Huang and Beroza 2015). Although 62 

template matching is robust to noise, it tends to find only events whose waveforms are nearly 63 

identical to the template. This introduces a strong bias to the event detection and its performance 64 

for detection highly depends on the catalog of template waveforms. There are also hybrid 65 

picking methods that combine several amplitude based methods, statistical approaches, and 66 

polarization information (e.g. Baillard et al., 2014) with the idea that relying on a consensus 67 

between different methods may lead to improved detection algorithms.  68 

    In this study, we develop a method specifically for three component (3C) data. Using 3C 69 

microseismic data improves the quality of the microseismic data in various ways. Particle motion 70 

behavior from 3C components was used to calibrate the orientation of the seismometers (Oye 71 

and Ellsworth, 2005) and to rotate the coordinates to enhance the P- and S- wave energy (Gharti 72 

et al., 2010). We are particularly interested in detecting aftershocks or foreshocks of known large 73 

events but our method has general applicability. It is based on analysis of the particle motion of 74 

the direct P-wave, moveout, and direction of arrival information of known (catalog) events. This 75 

approach allows us to detect events in a low SNR environment. 76 

 77 

Methodology 78 

Concept 79 



 

 

    When an earthquake occurs, a compressional wave (P-wave) propagates in the heterogeneous 80 

earth’s crust experiencing scattering and dispersion, and reaches seismometers. One or more 81 

cycles of a clear P-wave onset (direct P-wave) are followed by converted and multiply scattered 82 

waves that form a P-coda. The direct P-wave may well be the cleanest part of the seismogram 83 

and it may contain the most reliable information about the earthquake that produced it. Figure 1 84 

shows examples of 3D particle motion corresponding to different phases of the field-recorded 85 

signal from a real earthquake. Particle motion of the noise before the P-wave arrival exhibits 86 

random behavior. During the first few cycles of the P-wave arrival, particle motion shows strong 87 

linearity along the direction of the P-wave arrival. The arriving S-wave is polarized in the plane 88 

perpendicular to the direction of the P-wave polarization. Even some coherent waves coming 89 

after the S-wave, that could possibly be converted or reflected waves, show complicated 90 

polarization. The S-coda contains a large number of phases that once again lead to apparently 91 

random polarization.   92 

    The particle motion of the P-wave arrival has two major features: 1) it delineates a linear 93 

trajectory, and 2) it is polarized in the direction to the source region along the ray path (Nagano 94 

et al., 1989; Shearer, 1999). We utilize both of these features of the P-wave to construct a 95 

method for event detection (hereafter referred to as our method but detail will be explained 96 

below). These features are common to earthquakes regardless of the source. Linear polarization 97 

has often been used in existing event detection/picking methods (Moriya and Niitsuma 1996; 98 

Baillard et al. 2014). Polarization information has also been used to detect reflections contained 99 

in coda waves (Moriya 2008; Soma et al. 2007). Meersman et al. (2006) used a weighted 3C 100 

array method to improve polarization measurements of arrivals in the presence of polarized and 101 

correlated background noise. The orientation of the direct P-wave arrival along with the P-S 102 

arrival time have been used to locate hypocenters of seismicity using single station recordings 103 

(e.g. Frohlich, 1992). However, polarization features have not been used for event detection in 104 



 

 

low SNR conditions. In this paper, we propose an event detection algorithm and we demonstrate 105 

its effectiveness on field data. 106 

 We first discuss the application of our method to 3-component data from a single station. 107 

We construct a characteristic function that combines measures of linearity and the Direction of 108 

Arrival (DOA), essentially the angle of incidence, of the ray from the event to the station. We 109 

show that this measure is a reliable indicator of the presence of an event in the data. We then 110 

show how to stack the characteristic functions derived from data recorded at multiple stations 111 

surrounding a master event to detect other, generally smaller, events in the vicinity of the master 112 

event.  113 

 114 

Spectral matrix analysis 115 

    We assume that we have access to continuously recorded 3C digitized data. In the field data 116 

we use to illustrate the method, the dominant frequency of seismic events is less than 50 Hz and 117 

the sampling frequency of recorded data is 200 Hz. We introduce the spectral matrix (SPM) 118 

analysis method to characterize the 3D particle motion in the time-frequency domain. SPM 119 

analysis has been used for various purposes such as precise picking of P-wave arrivals (Moriya 120 

and Niitsuma 1996), and detection of reflected or polarized seismic waves (Soma et al. 2002; 121 

Moriya 2008). The 3D particle motion is represented in the time-frequency domain with the help 122 

of the SPM matrix, so we can characterize the polarization by focusing on the frequency band 123 

containing a significant portion of the P-wave energy that maximizes the chance to extract direct 124 

P-wave arrival features. We expect the SPM matrix analysis to enhance the sensitivity to low 125 

SNR data since we evaluate polarity features in a frequency band where the effect of noise is 126 

minimal. Our method is independent of source mechanism since polarity features are not 127 

dependent on source type but are rather based on the physics of wave propagation from the 128 

source to the receiver. Because we use all three available components and consider the 129 



 

 

correlation between the different components of the 3-dimensional signal, we expect our method 130 

to outperform some conventional methods like STA/LTA and other amplitude-based methods 131 

that use single component waveforms. 132 

    The spectral matrix is represented as a complex function of time and frequency (Samson, 133 

1977; Moriya and Niitsuma 1996), as follows: 134 

𝑆𝑝(𝑡, 𝑓) = (
𝑆𝑥𝑥(𝑡, 𝑓) 𝑆𝑥𝑦(𝑡, 𝑓) 𝑆𝑥𝑧(𝑡, 𝑓)
𝑆𝑦𝑥(𝑡, 𝑓) 𝑆𝑦𝑦(𝑡, 𝑓) 𝑆𝑦𝑧(𝑡, 𝑓)
𝑆𝑧𝑥(𝑡, 𝑓) 𝑆𝑧𝑦(𝑡, 𝑓) 𝑆𝑧𝑧(𝑡, 𝑓)

) 135 

 (1) 136 

where Sii(t, f) (i = x, y, z) are the power spectra; Sij(t, f) (i, j = x, y, z, i≠j) are the cross-spectra 137 

estimated with Short Time Fourier transform (STFT) on each moving time window. Each 138 

element of the spectral matrix is calculated using a discrete time series windowed around time t, 139 

and f denotes frequency that is in practice also discrete and quantized. In what follows we will 140 

treat both t and f as continuous variables under the assumption that we can interpolate if 141 

necessary. The SPM matrix is calculated continuously in a rolling window centered at time t. 142 

Windows may overlap; we find that the method is quite robust to reasonable choices of the 143 

parameters of STFT. Below we discuss in more detail the effect of the window on the quality of 144 

event detection. Because multiplication by a conjugate in the frequency domain corresponds to 145 

cross-correlation in time, the spectral matrix captures linear dependence between the three 146 

components in any given window as a variance-covariance matrix. We will use this property of 147 

the spectral matrix in the next section.  148 

 149 

Evaluation of linearity 150 

    We characterize a 3D particle motion using the eigen decomposition of the spectral matrix: 151 

𝑆𝑝(𝑡, 𝑓) = [𝑉1, 𝑉2, 𝑉3] ∙ [
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] ∙ [𝑉1, 𝑉2, 𝑉3]𝑇 152 



 

 

(2) 153 

Here (λi) are the eigenvalues ordered so that λ1 > λ2 > λ3 , and (Vk = Vk (t, f)) are the eigenvectors, 154 

where Vk corresponds to the eigenvalue λk, for k = 1, 2, 3. We introduce a function CL to 155 

characterize the linearity of the 3-component wave around time t in the frequency band f as 156 

follows (Benhama et al., 1988): 157 

𝐶𝐿(𝑡, 𝑓) =
(𝜆1 − 𝜆2)2 + (𝜆1 − 𝜆3)2 + (𝜆2 − 𝜆3)2

2(𝜆1 + 𝜆2 + 𝜆3)2  158 

(3) 159 

where λi = λi (t, f). The function CL varies between 0 and 1, and its value indicates the degree of 160 

linearity (e.g., CL = 1: particle motion delineates a rectilinear shape, CL = 0: there is no linear 161 

dependence between the components). It is easy to see that CL = 1 only when λ1 is much larger 162 

than λ2 and λ3. In this case, the particle motion is primarily linear in the direction of V1; the 163 

motion in the other directions indicated by the remaining eigenvectors is negligible. We can 164 

evaluate the linearity of particle motion as a function of time and frequency by computing CL (t, 165 

f) for all times and all frequencies, or we can focus on the frequency band that has most of the 166 

wave energy, and thus achieve the largest signal-to-noise ratio. By averaging CL across that 167 

frequency band, we obtain a time-function 𝐶𝐿̅̅ ̅. Mathematically, 168 

𝐶𝐿̅̅ ̅(𝑡) =
1

𝑛 − 𝑚
∑ 𝐶𝐿(𝑡, 𝑓𝑖)
𝑛+1

𝑖=𝑚

 169 

(4) 170 

where m and n are the frequency indices corresponding to the physical band we consider. 171 

 172 

Evaluation of DOA inclination 173 

    We perform the eigen decomposition and extract an eigenvector corresponding to the largest 174 

eigenvalue. We define DOA T as 175 



 

 

𝜃(𝑡, 𝑓) = 𝑡𝑎𝑛−1 |𝑉1𝑧(𝑡, 𝑓𝑖)|

√|𝑉1𝑥(𝑡, 𝑓𝑖)|
2
+ |𝑉1𝑦(𝑡, 𝑓𝑖)|

2
 177 

(5) 176 

where V1x, V1y, and V1z are the bases components in a Euclidean coordinate system. When the 178 

wave is linearly polarized, the direction of arrival (DOA) as shown in Figure 2 has a simple and 179 

intuitive meaning. If the wave is not linearly polarized, defining DOA is more problematic. This 180 

vector may not have an obvious geometric interpretation, and will in fact typically vary quite 181 

rapidly as a function of time. This can be seen by looking at the particle motion of the noise 182 

before the direct P-wave arrival or deep in the S-wave coda, as shown in Figure 1. Even if DOA 183 

estimates appear stable when data are noisy it is not clear what, if any, physical significance we 184 

can attribute to that. Thus, we will use the DOA estimates only along with estimates of linearity. 185 

    Note that this definition assumes that the vertical component of the sensor points vertically 186 

down. However, the inclination is insensitive to rotations of the receiver in the xy-plane. When 187 

receivers are installed in a vertical borehole, they may be accidentally rotated, but that will not 188 

affect the estimated inclination. Tool orientation will greatly affect any estimate of the azimuth 189 

because the azimuth is defined with respect to x and y axes. Horizontal orientation of the 190 

receivers could in principle be calibrated using arrivals from sources with known hypocenters, 191 

such as check-shots or previously located earthquakes (Oye and Ellsworth, 2005), so azimuth 192 

can be also available. However, in this study we use only the inclination and ignore the azimuth 193 

because uncertainty of azimuth is large when there is weak particle motion in the horizontal 194 

plane, which is common in our data due to nearly vertical incidence angle at many monitoring 195 

situations. 196 

    Similarly, to 𝐶𝐿̅̅ ̅, we define an average DOA inclination, �̅� , by taking the average in the 197 

dominant frequency band of the recorded signal: 198 



 

 

�̅�(𝑡) = 𝑡𝑎𝑛−1

[
 
 
 1
𝑛 − 𝑚

∑
|𝑉1𝑧(𝑡, 𝑓𝑖)|

√|𝑉1𝑥(𝑡, 𝑓𝑖)|
2
+ |𝑉1𝑦(𝑡, 𝑓𝑖)|

2

𝑛+1

𝑓=𝑚
]
 
 
 
 200 

(6) 199 

 201 

Tests using synthetic signals 202 

SNR sensitivity analysis 203 

    We intend to use our method to detect small events buried in relatively high noise so before 204 

applying our method to field data, we first investigate the SNR sensitivity of estimated linearity 205 

using a synthetic test. Please also see the performance of this method on a simple synthetic 206 

example in the supplemental material (Fig. S1). We prepared 1000 realizations of additive band 207 

limited noise and created a synthetic data set by adding sinusoidal P-wave arrivals with different 208 

amplitudes to model various SNR conditions: 10, 5, 0, -5, -7, -10 dB. The SNRs are defined as 209 

the ratio of the variance of the signal to the variance of the noise. Then, we compute 𝐶𝐿̅̅ ̅ in a time 210 

window before the P-wave arrival that contains just noise (blue window in Fig. 3a) and a 211 

separate time window that contains the sinusoidal P-wave arrival part (red window in Fig. 3a). 212 

By repeating the same procedure 1000 times for each noise realization, and plotting histograms 213 

of resulting values, we obtain the probability distribution function of 𝐶𝐿̅̅ ̅ under different scenarios 214 

(just noise or signal+noise) as shown in Figure 3b. If the distributions that correspond to 215 

different scenarios do not overlap, then we can distinguish between the scenarios just on the 216 

basis of 𝐶𝐿̅̅ ̅. When the histograms corresponding to different scenarios overlap, then the amount 217 

of overlap indicates the probability of a false alarm based on the use of the amplitude of 𝐶𝐿̅̅ ̅ as a 218 

detector (flagging an event when there is in fact none). When SNR is relatively high, i.e., greater 219 

than 0 dB, the two distributions shown in Figure 3b are clearly separated with little to no 220 

apparent overlap, suggesting that our method can detect events almost perfectly. Even when we 221 



 

 

decrease SNR to -7 dB, the peaks of the distributions are clearly separated, however, the area of 222 

overlap increases significantly implying a larger probability of erroneous detection. To 223 

summarize, we demonstrate that our method can perform quite well in very noisy environments 224 

even for negative SNRs. 225 

 226 

Application to field data 227 

Groningen, the Netherlands 228 

    The Groningen gas field is located in the North-East part of the Netherlands. As the biggest 229 

gas field in Western Europe, it has provided natural gas since 1963 (Willacy et al. 2018). 230 

Historically, the Groningen region had not been seismically active but more recently, a large 231 

number of seismic events, including a M3.6 event, have been reported. These seismic events are 232 

thought to be caused by compaction of the reservoir associated with gas production (Bourne et al. 233 

2014). A dense network of 3C sensors has been deployed around the field in an effort to better 234 

monitor and understand this seismicity (Dost et al. 2017; Spetzler and Dost, 2017).  235 

    We apply our methodology to 4 hours of continuously recorded data starting from 236 

00:00:00.315 on 1st November 2016 in a small region within the Groningen field (Fig. 4). The 237 

continuous data are sampled at 200 Hz sampling rate. Within this 4-hour period, two large events 238 

occurred, and were detected with the conventional method using the amplitude ratio between the 239 

events and average noise level, similar to the STA/LTA method, then located and cataloged 240 

(Dost et al. 2012). The location threshold was reduced from ~M1.0-M1.5 (van Eck et al. 2004) to 241 

~M0.5 due to network upgrades made since 2014 (Dost et al. 2017; Spetzler and Dost, 2017). 242 

The minimum threshold for location varies depending on the location of the event within the 243 

Groningen field. From Figure 4 in Dost et al. (2017), the minimum threshold in our study area is 244 

M0.5. Phase picks from at least three stations are required for hypocenter determination, (Dost et 245 

al., 2017). Thus, we expect that there are more detected but unlocated events than those listed in 246 



 

 

the KNMI catalog. M0.1 events are listed in the relocated subcatalog in Spetzler and Dost, 247 

(2017). During the four-hour time window in our study area, the first catalog event of M1.9 248 

occurred at 00:12:28 and another one of M2.2 occurred approximately 45 minutes after the first 249 

event. Their hypocenter locations are estimated to be quite close to one another (Fig. 4). We 250 

choose 5 stations positioned nearby (named G67, G23, G29, G19, and G24) for our study. Each 251 

station in our study consists of a shallow borehole with four 3C seismometers deployed at four 252 

levels (50, 100, 150, and 200 m beneath the surface). In total, 20 3C seismometers were used, 253 

and they produce 60 traces altogether. These stations are within 4 km from the epicenter of the 254 

M1.9 catalog event. Distances of each station from the epicenter of M2.2 event are listed in the 255 

caption for Figure 4. Continuous data and the seismic catalog were obtained from the KNMI 256 

website (see Data and Resources Section). 257 

 258 

Results 259 

    To check the applicability of our method, we first apply it to the M1.9 catalog event. As this 260 

event has a large magnitude, it is visually apparent and easily detectable by conventional 261 

methods, so we use it to check our method. Figure 5a shows normalized 3C waveforms at the 4th 262 

level (200 m depth) at station G67. We observe a clear P-wave arrival on the vertical component 263 

and a clear S-wave arrival on the horizontal components. Around 1.5 sec after the S-wave arrival, 264 

some coherent waves can be seen on all three components. These could be some reflected or 265 

converted phase. We compute CL and T using a 50 point (0.25 sec) moving time window and one 266 

point time shift. Figure 5b shows the time-frequency distribution of CL estimated from 3 267 

component waveforms. We can observe a clear peak around the time of the P-wave arrival over 268 

all frequency bands and the peak in CL lasts less than 0.5 sec. CL behaves randomly both before 269 

the P-wave arrival and soon after the direct P arrival has passed. The average linearity 𝐶𝐿̅̅ ̅ 270 

calculated from the 20~40 Hz frequency band is nearly 1 around the time of the P-wave arrival, 271 



 

 

but it also displays high values greater than 0.8 at other times deep in the P-wave and S-wave 272 

codas (Fig. 5c). Also we were not able to see any linear polarization feature at the coherent 273 

arrival about 1.5 sec after the S wave. This is not at all surprising in light of the fact that a wave 274 

travelling in a structure as complicated as the one at Groningen (Dando et al. 2019) generates a 275 

large number of conversions and multiples, some of which can be linearly polarized. In the time-276 

frequency distribution of T shown Figure 5d, we observe a stable part at the P-wave arrival over 277 

frequency. We estimate from this figure that the direct P-wave incidence angle is around 60~75q. 278 

The DOA estimates become much less stable, and as we argued above, much less meaningful 279 

after that. The inclination angle �̅� averaged over 20~40 Hz, shown in Figure 5e, confirms that the 280 

direct P-wave arrives at an incidence angle of 75q, which is consistent with basic geometry and 281 

simplified raytracing between the source and receiver. In summary, our method can successfully 282 

identify both linearity and inclination of the P-wave arrival from relatively high SNR events 283 

recorded in the field. In addition, there is evidence that we could use DOA to detect the arrival of 284 

the S-wave. That is we can observe the red zones up to ~40 Hz around the S-wave arrival in 285 

DOA distributions of Figure 5d. Linearities of S-wave arrivals are not always high. Averaged 286 

DOAs in Figure 5e suggest that DOA of the S-wave arrival is nearly horizontal and 287 

perpendicular to the nearly vertical polarization direction of the P-wave. However, examining 288 

more details of the S-wave is beyond the scope of this study because we want to exploit the 289 

simplicity of the P-wave propagation characteristics. We will examine S-waves in future work. 290 

    Now we attempt to detect previously undetected events. Towards that end, we conducted a 291 

visual inspection of the same 4 hours of continuous data and detected several events that were 292 

not included in the catalog. One of those events occurred 13 seconds after the first (M1.9) 293 

catalog event. Figure 6a shows the waveforms at level 4 of station G67 for this event. We 294 

applied our method to this event and all computation was performed with the same parameters 295 

that we used for the catalog event (Table 1). Our method successfully detects this event. 296 



 

 

Specifically, we can observe a peak of CL around the P-wave arrival in Figure 6b. The linearity is 297 

high for frequencies greater than about 15 Hz, which is greater than the minimum frequency than 298 

for the case of the larger catalog event. As before, 𝐶𝐿̅̅ ̅, exhibits peaks not just at the time of the P-299 

arrival but also right after. The subsequent peaks may correspond to SP converted phases 300 

generated at one of the interfaces in the subsurface. Another peak can be found around the S-301 

wave arrival time but this peak is not as pronounced as the earlier peaks. S-waves are often found 302 

to have elliptical polarization, which will not give rise to high linearity. Turning our attention to 303 

the inclination T, we see in Figure 6d that the yellow color highlight appears at around the P-304 

wave arrival time. The averaged inclination �̅� indicates that the incident angle of this event is 305 

also around 75q just like that of the catalog event examined earlier. While our method is not 306 

intended to provide an accurate location, we can hypothesize that this smaller event has 307 

originated in the same seismogenic zone where the first catalog event occurred and that the direct 308 

P-waves propagated along similar ray-paths that resulted in nearly identical �̅�. In summary, we 309 

can detect the linearity and estimate the inclination of arrival of an event that was not detected by 310 

a conventional method. Note that we could also use the information of estimated azimuth 311 

orientation from P-wave direct arrival particle motion to confirm the seismogenic area, however 312 

in this study, we just focus on the inclination as mentioned before.  313 

 314 

Influence of window length 315 

    Here we analyze the effect of the window length used to calculate the spectral matrix on the 316 

performance of 𝐶𝐿̅̅ ̅ and �̅� estimation. We compute 𝐶𝐿̅̅ ̅ and �̅� for different time window lengths of 317 

20, 50 100, 150, and 200 sampling points (0.1, 0.25, 0.5, 0.75, and 1 sec, correspondingly) for 318 

the same low SNR event that we analyzed before (Fig. 6) and the results are shown in Figure 7. 319 

Other parameters remained the same as before (Table 1). Both 𝐶𝐿̅̅ ̅ and �̅� computed with a 20 320 

point (0.1 sec) time window have good time resolution and flag the arrival of the direct P-wave 321 



 

 

quite precisely. But additionally, we see a lot of peaks 𝐶𝐿̅̅ ̅, which could potentially be false 322 

alarms. With the increase of the window length, 𝐶𝐿̅̅ ̅ and �̅� become smoother because the longer 323 

time window acts as a lowpass filter. The onset of the peak of 𝐶𝐿̅̅ ̅ for the P-wave arrival tends to 324 

come early for longer time windows. We infer that as soon as polarized particle motion is caught 325 

in the time window, the SPM matrix analysis detects the linearity of the wave and 𝐶𝐿̅̅ ̅ increases to 326 

1. However, 𝐶𝐿̅̅ ̅ will go back down soon after the polarized particle motion is contaminated by 327 

random particle motion from the P-wave coda. In summary, shorter time windows increase the 328 

time resolution but at the same time, false alarm rates increase. On the contrary, the longer time 329 

window can get rid of small spiky peaks that are probably false alarms, but the width of the peak 330 

becomes wider causing a loss of time resolution. Here, our focus is not on the precise picking of 331 

the P-wave arrival time but on event detection that prefers a more stable measurement to a small 332 

time resolution, so we use the 50 point (0.25 sec: red line in Fig. 7) time window for further 333 

analysis because that makes 𝐶𝐿̅̅ ̅ and �̅� smooth and reduces the number of false peaks. 334 

 335 

 336 

Detection of low SNR events 337 

Definition of characteristic function 338 

    We showed that our method can extract the two key features of the P-wave arrival, linearity 339 

and inclination angle, even from low SNR waveforms. For robust event detection, the two 340 

features can be combined to produce a scalar characteristic function (or a score), which can then 341 

be thresholded to obtain a final classification. We construct such a characteristic function, which 342 

will be the main function used for our detection method, as follows. Assuming that we are 343 

interested in smaller events originating in the vicinity of a large master event, we look for 344 

directions of arrivals that are similar to that of the master event. A deviation from the DOA of 345 

the large event is penalized. This approach is purely ray-geometric and it is therefore robust to 346 



 

 

different source mechanisms. We introduce a characteristic function for DOA inclination, CDOA, 347 

that penalizes the difference between the measured and reference DOA (T0): 348 

𝐶𝐷𝑂𝐴(𝑡) = 𝑒−1
2(𝐷𝑂𝐴𝑖𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝐷𝑂𝐴0

𝜎 )2 349 

(7) 350 

where σ is a free parameter that is set heuristically. In subsequent examples, we use σ=10q. This 351 

characteristic function decays exponentially especially after difference in DOA becomes more 352 

than 10q (Fig. S2 in supplemental material). This function varies from 0 to 1. When the measured 353 

and reference DOA (DOA0) inclinations are the same, CDOA is 1. Recall that we use only the 354 

inclination but we could just as easily penalize deviations from the observed azimuths. 355 

    The total characteristic function (or a total score), cf, combines 𝐶𝐿̅̅ ̅ with CDOA, as follows 356 

𝑐𝑓(𝑡) = 𝐶𝐿̅̅ ̅(𝑡) × 𝐶𝐷𝑂𝐴(𝑡) 357 

(8) 358 

We found that using the score cf given by Eqn. (8) gives good results for event detection. As 𝐶𝐿̅̅ ̅ 359 

and CDOA range between 0 and 1, cf thus also varies from 0 to 1. Equation (8) should be close to 360 

1 when the following two conditions are satisfied; 1) particle motion shows linearity, 2) 361 

measured DOA inclination is similar to reference DOA inclination. By combining linearity with 362 

DOA inclination information, we can reject time windows where 𝐶𝐿̅̅ ̅ is close to 1 but the wave 363 

apparently does not originate from the target seismogenic zone. We rely on the information of V1 364 

(DOA inclination) only when λ1 is much larger than λ2 and λ3, so 𝐶𝐿̅̅ ̅ behaves as a weighting 365 

function for CDOA. 366 

 367 

Application to low SNR events 368 

    We test our characteristic function from Eqn. (8) on the same low SNR event that we used 369 

before to check the performance of our linearity and DOA estimators. Figure 8 shows the 370 



 

 

calculated functions 𝐶𝐿̅̅ ̅, 𝐷𝑂𝐴𝑖𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , CDOA, and cf using the same parameters as before (Table 1). 371 

Here, we use 75q as the reference inclination DOA0 . The reference inclination matches the 372 

estimated inclination of the arrival of the M 1.9 catalog event shown in Figure 5. We observe in 373 

Figure 8c that CDOA reaches almost 1 at the time of the P-wave arrival. After the direct P-arrival, 374 

CDOA still shows high values but these values will be deemphasized when multiplied by 𝐶𝐿̅̅ ̅. CDOA 375 

varies more precipitously than 𝐷𝑂𝐴𝑖𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅  due to the introduction of the exponential cost function 376 

from equation. (7). The cf in Figure 8d is apparently quieter than both 𝐶𝐿̅̅ ̅ and 𝐷𝑂𝐴𝑖𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅  although 377 

we can observe several peaks especially after the P-wave arrival. Using a combination of 𝐶𝐿̅̅ ̅ and 378 

𝐷𝑂𝐴𝑖𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅  drastically enhances the detectability of seismic events from a certain seismogenic 379 

region. 380 

 381 

Application to continuous field data 382 

    Finally, we apply our method to the entire 4 hours of continuous data recorded at 5 monitoring 383 

wells having 3 component seismometers at 4 levels. We use the same parameters as before (see 384 

Table 1). We use the incident angles of the M1.9 catalog event as the reference DOA inclination 385 

DOA0. Those incident angles are estimated from the deepest seismometer in each monitoring 386 

well and used as constant for seismometers in the same well. The reference DOA inclination 387 

DOA0s are 75, 67, 67, 80, and 70 degrees for G67, G23, G29, G19, and G24 respectively. After 388 

computing cfs for each seismometer, we stack cfs shifted according to the moveout shown in 389 

Figure 9. This moveout, for all receivers at all depths for all stations, was estimated from the 390 

waveforms of the same catalog event by Poliannikov and Fehler, (2018). Stacking moveout-391 

corrected characteristic functions increases the signal-to-noise ratio of cfs and thus boosts event 392 

detectability. It also further ensures that the detected events likely have originated from the same 393 

source region as the master event whose moveout is used for stacking.  394 



 

 

    Figure 10a shows each cfs from all seismometers in the study area. Even before stacking, we 395 

can observe coherent peaks across different traces. For some of the seismometers, the noise level 396 

in cf is not low enough that the peaks indicating P-wave arrivals are pronounced. We also note a 397 

number of peaks that are probably false alarms. Figure 10b shows the result of stacking all cfs 398 

from seismometers in the study area. We can observe that the noise level of cf is significantly 399 

suppressed down to around 0.2, and that the peaks of the stacked cfs are much more visible. We 400 

count more than ten clear peaks standing out from the noise in the stacked cf. Stacking cfs 401 

enhances the peaks well, especially the coherent peaks. Indeed, we can detect low SNR events 402 

with our proposed method by introducing a proper threshold. 403 

    To set the threshold for detection, we first removed 25 % of the smallest and largest data from 404 

the stacked cf. Then we calculate the median value and the deviation from the median absolute 405 

value based on the central limit theorem. Finally, we define the threshold for detection as this 406 

median value plus 15 times the median absolute deviation. This process is often used to 407 

determine the threshold for detection in the template matching method, and, in some of those 408 

cases, the threshold is set as a median value plus 12 times the deviation (Wu et al. 2017), so our 409 

detection threshold is relatively conservative. 410 

    Figure 11a shows the results of the detection. There are 14 detections including the previously 411 

detected catalog events with magnitudes M1.9 and M2.2. Our method detects 6 events shown 412 

with triangles in addition to two catalog events (stars) and 6 events detected by visual inspection 413 

(diamonds). For each of the detected events, we conducted a visual inspection and confirmed 414 

whether the detected result is an event or not. We found that our method could detect 4 415 

additional low SNR events which our visual inspection missed and that 2 detections were false 416 

alarms. We found that newly detected low SNR events were so small that clear amplitude/phase 417 

changes could not be observed for two most distant stations as shown in Figure 12. The two false 418 

alarm events shown with open triangles in Figure 11a arrived just after the M1.9 and 2.2 catalog 419 



 

 

events respectively. Therefore, these could be arrivals of some coherent reflection or converted 420 

waves, but our visual inspection was unable to confirm that.  421 

 422 

Discussion 423 

    Using cfs stacked for all five boreholes (hereafter referred as cfall), we can detect four 424 

additional low SNR events (Table 2). As waveforms of two of them show (Fig. 12), the 425 

appearance of P-wave can be observed only at the 3 monitoring stations (G67, G23, and G29) 426 

that are nearest to the estimated source region. So, we also tested stacking the cfs from different 427 

subsets of stations and investigated the performance of the resulting detection algorithm. We 428 

calculate the stacked cf for the two and three monitoring wells nearest the source region, and also 429 

define the thresholds with the same manner to the stacked cfall. The threshold for the G67 and 430 

G23 (cf12) calculated according to the procedure described above is 0.3204 and that for G67, G23, 431 

and G29 (cf123) is 0.3166.The threshold for cfall is 0.2283 (Table 2). The detection results for both 432 

stacked cfs are shown in Figure 11b and c respectively, and summarized in Table 2. Focusing on 433 

the nearer stations basically increases the detection results as cf12 had 25 detections and cf123 had 434 

17 detections in total. The four additional buried events detected by cfall are also detected by cf12 435 

and cf123. Both cf12 and cf123 detect two addition low SNR events, and cf123 detects one more low 436 

SNR event. These events were not detected with cfall. Figure 13a shows the waveforms of one of 437 

the events detected using both cf12 and cf123, and Figure 13b shows the event that was detected 438 

only with cf123. Waveforms of these events are noisier than those of the events detected by visual 439 

inspection shown in Figure 7, and it is difficult to identify their P-wave arrivals. 440 

    The detection from using cf12 includes 11 false alarms even though the number of false alarms 441 

with cfall and cf123 was only 2. Focusing on the nearer stations should enhance sensitivity but at 442 

the same time detection results may include a lot of false alarms as in the case of cf12. One reason 443 

could be that the number of the sensors is not enough to suppress the unexpected peaks that 444 



 

 

occur at a few sensors. Once we find the best number of sensors to average, we can detect the 445 

largest number of low SNR events having the minimum number of false alarms. The false alarms, 446 

shown in Figure S3 and S4 (see supplemental materials), detected by both cf12 and cf123 (Fig. 11) 447 

occur just after the M1.9 and M2.2 catalog events. This analysis suggests that focusing on the 448 

nearer stations may provide better detection results than those obtained by including more distant 449 

stations as cfall does (see also Fig. S5 in supplemental materials). 450 

    For further comparison and validation of our method, we tested the STA/LTA method using 451 

the same data. We set the STA and LTA windows to be 100 points (0.5 sec) and 500 points (2.5 452 

sec) following the recommendation in Akram and Eaton, (2016). We then calculated STA/LTA 453 

for all stations. Then, the STA/LTA time series are stacked using the same moveout that we used 454 

for our method. We also set the threshold in the same manner as we have done for our new 455 

method and we varied the subsets of stations used for the stacking. The results are summarized in 456 

Table 2 STA/LTA can detect the two catalog events and 4 out of 6 events detected by visual 457 

inspection. STA/LTA also detected some false alarms depending on the subset of stations used 458 

for stacking. However, none of the low SNR events that were detected by our method were 459 

detected by STA/LTA. As we discussed before, the KNMI network can detect more events than 460 

in the catalog by using a method similar to STA/LTA. Human visual inspection outperforms 461 

STA/LTA. Needless to say, our method detected more events than visual inspection and 462 

STA/LTA. Complete details of detection results for our method are summarized in Table S1 and 463 

compared with results obtained using STA/LTA and a simple template matching method. 464 

 465 

Conclusions 466 

    To maximize the advantage of continuous recordings of microseismicity and for evaluating the 467 

risks of potential significant induced seismic events, we need to detect as many events as 468 

possible even from low SNR data. The event detection methods are required to detect even low 469 



 

 

SNR events and diverse source types ideally without the use of template waveforms. We have 470 

proposed a novel event detection method designed to identify low SNR events by measuring 471 

polarization features that are independent of seismic source characteristics. Our method analyzes 472 

polarization in the time-frequency domain and extracts linearity and directionality of polarization. 473 

Linearly polarized signals coming from the direction of the reservoir are assumed to be seismic 474 

events. We applied this method to a small subset of induced seismicity monitoring data from 475 

Groningen, The Netherlands, and detected real events that are not in the public KNMI catalog. 476 

We also confirmed the performance of our method by comparison with human visual inspection 477 

and STA/LTA. Our method detects about twice as many events as STA/LTA and our method 478 

detects several additional events that human visual inspection missed. Thus, our method 479 

performed quite well at detecting low SNR events, so it can be used to complete existing seismic 480 

catalogs, which will lead to providing better characterization of reservoirs and better seismic risk 481 

assessment from the analysis of small magnitude events. 482 

    The current version of our method needs a previously observed reference event and we used 483 

its DOA and moveout information to focus detection on events from the region near that 484 

reference event. This requirement would be a technical challenge for the applicability of this 485 

method to a new field. However, we can overcome this by introducing forecasted DOA and 486 

moveout based on approaches such as waveform modeling (Dando et al. 2019). Then we could 487 

apply our method to the entire catalog to enhance it. 488 

  489 



 

 

Data and Resources 490 

Continuous data and the seismic catalog were obtained from KNMI website (http://rdsa.knmi.nl, 491 

last accessed on July, 2019). 492 
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Tables 616 

 617 

Table 1. Summary of analysis conditions. 618 

 Synthetic wave  
test (Fig. S1) 

SNR sensitivity 
analysis (Fig. 3) 

Catalog event: 
M1.9 (Fig. 5) 

Undetected 
event (Fig. 6) 

Influence of 
window length 
(Fig. 7) 

Detection 
(Fig. 8, 10-13) 

Wave Synthetic wave 
sinusoidal plus 
band limited 
noise 

Synthetic wave 
sinusoidal plus 
various SNR 
band limited 
noise 

Real 
seismogram 

Real 
seismogram 

Real 
seismogram 

Real 
seismogram 

Sampling 
frequency 

100 Hz 100 Hz 200 Hz 200 Hz 200 Hz 200 Hz 

Time window 20 points 
(0.2 sec) 

20 points 
(0.2 sec) 

50 points 
(0.25 sec) 

50 points 
(0.25 sec) 

20, 50, 100, 
150, 200 points 

50 points 
(0.25 sec) 

Time window 
shift 

1 point NA 1 point 1 point 1 point 1 point 

Frequency 
band  

0-50 Hz 0-50 Hz 0-100 Hz 0-100 Hz 0-100 Hz 0-100 Hz 

Averaged 
frequency 
band  

5-15 Hz 5-15 Hz 20-40 Hz 20-40 Hz 20-40 Hz 20-40 Hz 

 619 

 620 



 

 

Table 2. The result of event detection with different ways of stacking cf. B1~6 are the low SNR 621 

events detected by visual inspection, which we used as benchmarks to show that our method has 622 

detectability that is better than visual inspection. As another benchmark, the result of detection 623 

with STA/LTA method is also shown. 624 

 625 
 Our method STA/LTA 
 Stacked all:  

cfall  
(0.2283) 

Stacked 1-2:  
cf12  
(0.3204) 

Stack 1-3: 
cf123  
(0.3166) 

Stacked all:  
STA/LTAall 
(0.2337) 

Stacked 1-2: 
STA/LTA12 
(0.2821) 

Stack 1-3: 
STA/LTA123 
(0.2556) 

Catalog 
M1.9 

detected detected detected detected detected detected 

Catalog 
M2.2 

detected detected detected detected detected detected 

B1 detected detected detected detected detected detected 

B2 detected detected detected    
B3 detected detected detected detected detected detected 
B4 detected detected detected detected detected detected 
B5 detected detected detected detected detected detected 
B6 detected detected detected    

Additional 
low SNR 

events 

4 6 7 0 0 0 

False 
alarms 

2 11 2 1 0 1 

Total 14 25 17 7 6 7 
 626 
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List of Figure Captions 628 

Figure 1. Examples of particle motions around several phases. The waveforms shown with white 629 

lines are the 3 component seismograms of M1.9 catalog event recorded at G674 Groningen, the 630 

Netherlands. The background images behind waveforms are spectrograms (horizontal-1, 631 

horizontal-2 and vertical component from top to bottom). Particle motions shown in sub-panels 632 

are plotted with samples within hatched time windows for noise, P-wave arrival, S-wave arrival, 633 

possible converted or reflected wave, and S-coda part. Note that the scales of each cube are 634 

different. 635 

 636 

Figure 2. Conceptual image of the linear particle motion (bold black line). This linear particle 637 

motion is expressed as the 1st eigenvector (V1) shown with a red arrow. The angle between V1 638 

and the horizontal plane is defined as DOA inclination, which is estimated with equation (5). In 639 

many cases, the orientation of the horizontal axes are not known, so DOA azimuth is not used in 640 

this study. 641 

 642 

Figure 3. The result of SNR sensitivity analysis. (a) example of synthetic waveforms in the case 643 

of SNR = -1.9 dB. The CL̅̅̅̅  for the noise part is estimated from the blue hatched area and the CL̅̅̅̅  644 

for the P-wave part is estimated from the red hatched area. (b) Distribution of CL̅̅̅̅  for noise (blue) 645 

and P-wave part (red) for various values of SNR (10, 5, 0, -5, -7, and -10 dB). Histograms 646 

describe probability density functions (PDF). 647 

 648 

Figure 4. Map of the study area. Left shows The Netherlands and the location of the Groningen 649 

Field (dark shading). Right is the plan view of our study area. The locations of the M1.9 and 650 

M2.2 catalog events are shown with red stars. The depths of both catalog events are 3km. 651 

Locations determined by the Royal Netherlands Meteorological Institute (KNMI) are Lat. 652 



 

 

53.3010, Long. 6.8070 (M1.9 event), and Lat. 53.3060, Long. 6.8090 (M2.2 event). Five stations 653 

used in this study are shown with green markers showing station names. The distances from the 654 

epicenter of the M2.2 event to each station are 1.9386 km (G67), 2.7917 km (G23), 3.1065 km 655 

(G29), 3.5810 km (G19), and 3.6155 km (G24). 656 

 657 

Figure 5. The result for linearity (CL) and DOA inclination (DOAinc) on M1.9 catalog event. (a) 658 

3-component waveforms at the 4th level (200 m depth) at station G67. Blue and red are 659 

horizontal components, and yellow is vertical component. Time in sequence is referenced to the 660 

beginning of our data window at 00:00:00.315 on 1st November 2016. (b) CL distribution in time 661 

and frequency. (c) CL̅̅̅̅  averaged over 20~40 Hz. (d) DOAinc distribution in time and frequency. (e) 662 

DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅ averaged over 20~40 Hz. 663 

 664 

Figure 6. The evaluation result of linearity (CL) and DOA inclination (DOAinc) on low SNR 665 

event detected by our visual inspection. Details are the same as those for Figure 5. 666 

 667 

Figure 7. Influence of the window length on CL̅̅̅̅  and DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅. (a) 3 component waveforms of low 668 

SNR event (the same event in Fig. 6). (b) CL̅̅̅̅  estimated with different window lengths. Lengths 669 

tested here are shown with different colors. Blue: 20 points (0.1 sec), Red: 50 points (0.25 sec), 670 

Yellow: 100 points (0.5 sec), Purple: 150 points (0.75 sec), Green: 200 samples (1.0 sec). Red 671 

line is the result of window length used in this study. (c) DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅ results. Color code is same as 672 

(b). 673 

 674 

Figure 8. The performance of our characteristic function for detection purpose. (a) 3 component 675 

waveforms of low SNR event (same event in Fig. 6 and 7). (b) timeseries of CL̅̅̅̅ . (c) blue: 676 



 

 

timeseries of DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅. red: Characteristic function for DOA inclination (CDOA). (d) Characteristic 677 

function for event detection. 678 

 679 

Figure 9. Moveout used to stack cfs. The reference station is G674 (deepest sensor at G67). This 680 

moveout was estimated in Poliannikov and Fehler, (2018). 681 

 682 

Figure 10. (a) The cfs estimated for 4 hours of continuous data. Color indicates monitoring well. 683 

Each monitoring well has four downhole seismometers (50, 100, 150, 200m). The cfs are plotted 684 

in the order of depth. (b) Stacked cf using the moveout shown in Figure 9. 685 

 686 

Figure 11. Results of detection with our proposed method. Stars: catalog M1.9 and M2.2 events. 687 

Diamonds: low SNR events detected by visual inspection. Triangles: low SNR events detected 688 

by our method. Open triangles: false alarms detected by our method. (a) Stacked cf for all 689 

stations and the detection results with cfall. (b) Stacked cf for G67 and G23 (cf12) and the 690 

detection result with cf12. (c) Stacked cf for G67, G23, and G29 (cf123), and the detection result 691 

with cf123. 692 

 693 

Figure 12. Examples of waveforms of detected low SNR events. Both events are detected by our 694 

method with cfall, cf12, and cf123 but not by visual inspection. Occurrence time of these events can 695 

be seen in Figure 11 with triangle markers or Table S1. Black lines are the onset of detection at 696 

the 4th level (200 m) sensor at G67 station. 697 

 698 

Figure 13. Examples of waveforms of detected low SNR events. Both events are not detected 699 

with cfall nor with visual inspection. Occurrence time of these events can be seen in Figure 11 700 

with triangle markers or Table S1. (a) the low SNR event detected with cf12 and cf123. (b) the low 701 



 

 

SNR event detected only by cf123. Black lines are the onset of detection at the 4th level (200 m) 702 

sensor at G67 station. 703 

 704 

 705 

 706 



 

Figure 1. Examples of particle motions around several phases. The waveforms shown with white 
lines are the 3 component seismograms of M1.9 catalog event recorded at G674 Groningen, the 
Netherlands. The background images behind waveforms are spectrograms (horizontal-1, 
horizontal-2 and vertical component from top to bottom). Particle motions shown in sub-panels 
are plotted with samples within hatched time windows for noise, P-wave arrival, S-wave arrival, 
possible converted or reflected wave, and S-coda part. Note that the scales of each cube are 
different. 
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Figure 2. Conceptual image of the linear particle motion (bold black line). This linear particle 
motion is expressed as the 1st eigenvector (V1) shown with a red arrow. The angle between V1 
and the horizontal plane is defined as DOA inclination, which is estimated with equation (5). In 
many cases, the orientation of the horizontal axes are not known, so DOA azimuth is not used in 
this study. 



 
Figure 3. The result of SNR sensitivity analysis. (a) example of synthetic waveforms in the case 
of SNR = -1.9 dB. The CL̅̅̅̅  for the noise part is estimated from the blue hatched area and the CL̅̅̅̅  
for the P-wave part is estimated from the red hatched area. (b) Distribution of CL̅̅̅̅  for noise (blue) 
and P-wave part (red) for various values of SNR (10, 5, 0, -5, -7, and -10 dB). Histograms 
describe probability density functions (PDF). 



 

Figure 4. Map of the study area. Left shows The Netherlands and the location of the Groningen 
Field (dark shading). Right is the plan view of our study area. The locations of the M1.9 and 
M2.2 catalog events are shown with red stars. The depths of both catalog events are 3km. 
Locations determined by the Royal Netherlands Meteorological Institute (KNMI) are Lat. 
53.3010, Long. 6.8070 (M1.9 event), and Lat. 53.3060, Long. 6.8090 (M2.2 event). Five stations 
used in this study are shown with green markers showing station names. The distances from the 
epicenter of the M2.2 event to each station are 1.9386 km (G67), 2.7917 km (G23), 3.1065 km 
(G29), 3.5810 km (G19), and 3.6155 km (G24). 
 



 

Figure 5. The result for linearity (CL) and DOA inclination (DOAinc) on M1.9 catalog event. (a) 
3-component waveforms at the 4th level (200 m depth) at station G67. Blue and red are 
horizontal components, and yellow is vertical component. Time in sequence is referenced to the 
beginning of our data window at 00:00:00.315 on 1st November 2016. (b) CL distribution in time 
and frequency. (c) CL̅̅̅̅  averaged over 20~40 Hz. (d) DOAinc distribution in time and frequency. (e) 
DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅ averaged over 20~40 Hz. 



 

Figure 6. The evaluation result of linearity (CL) and DOA inclination (DOAinc) on low SNR 
event detected by our visual inspection. Details are the same as those for Figure 5. 



 

Figure 7. Influence of the window length on CL̅̅̅̅  and DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅. (a) 3 component waveforms of low 
SNR event (the same event in Fig. 6). (b) CL̅̅̅̅  estimated with different window lengths. Lengths 
tested here are shown with different colors. Blue: 20 points (0.1 sec), Red: 50 points (0.25 sec), 
Yellow: 100 points (0.5 sec), Purple: 150 points (0.75 sec), Green: 200 samples (1.0 sec). Red 
line is the result of window length used in this study. (c) DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅ results. Color code is same as 
(b). 



 

Figure 8. The performance of our characteristic function for detection purpose. (a) 3 component 
waveforms of low SNR event (same event in Fig. 6 and 7). (b) timeseries of CL̅̅̅̅ . (c) blue: 
timeseries of DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅. red: Characteristic function for DOA inclination (CDOA). (d) Characteristic 
function for event detection. 
 

 

Figure 9. Moveout used to stack cfs. The reference station is G674 (deepest sensor at G67). This 
moveout was estimated in Poliannikov and Fehler, (2018). 



 

Figure 10. (a) The cfs estimated for 4 hours of continuous data. Color indicates monitoring well. 
Each monitoring well has four downhole seismometers (50, 100, 150, 200m). The cfs are plotted 
in the order of depth. (b) Stacked cf using the moveout shown in Figure 9. 



 

Figure 11 Results of detection with our proposed method. Stars: catalog M1.9 and M2.2 events. 
Diamonds: low SNR events detected by visual inspection. Triangles: low SNR events detected 
by our method. Open triangles: false alarms detected by our method. (a) Stacked cf for all 
stations and the detection results with cfall. (b) Stacked cf for G67 and G23 (cf12) and the 
detection result with cf12. (c) Stacked cf for G67, G23, and G29 (cf123), and the detection result 
with cf123. 



 
Figure 12. Examples of waveforms of detected low SNR events. Both events are detected by our 
method with cfall, cf12, and cf123 but not by visual inspection. Occurrence time of these events can 
be seen in Figure 11 with triangle markers or Table S1. Black lines are the onset of detection at 
the 4th level (200 m) sensor at G67 station. 



 

Figure 13. Examples of waveforms of detected low SNR events. Both events are not detected 
with cfall nor with visual inspection. Occurrence time of these events can be seen in Figure 11 
with triangle markers or Table S1. (a) the low SNR event detected with cf12 and cf123. (b) the low 
SNR event detected only by cf123. Black lines are the onset of detection at the 4th level (200 m) 
sensor at G67 station. 
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Description of the Supplemental Material 

This supplemental material contains following five figures. 

- Figure S1 showing the performance of our method for synthetic 3C signal. 

- Figure S2 showing the characteristic function for equation (7). 

- Figure S3 and S4 showing the examples of false alarm events detected by our method. 

- Figure S5 showing the summary of the performance of our method. 

 

We present the detail methodology and the result of syntethic wave test, which is used in the 

tests using syntethic signals section in main manuscript. 

We discussed the performance of our method in the Discussion section, and we mentioned 

that, when using cf12 and cf123, our method detected two false alarms occurring immediately after 

the M1.9 and M2.2 catalog events. We interpreted them as either coherent reflections or 

converted waves. The waveforms of these two false alarms are shown in Figures S3 and S4. 
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We also present the additional discussion about the performance of our method in Figure S5. 

This discussion is not included in the main text since the discussion here is qualitative. This is 

merely one way to evaluate the performance of our method. 

Further comparisons of the detection performance between our method, STA/LTA and 

template matching methods are given in Table S1 along with the description of the template 

matching method test. 

 

Supplemental Text 

1. Synthetic wave test 

    To test our estimators of linearity and DOA, we conduct a simple synthetic study. We generate 

synthetic P- and S-wave arrival recordings for a 3C sensor. The source function is one cycle of a 

sinusoidal wave with a center frequency of 10 Hz. The recorded data are contaminated with 

additive band limited noise (Fig. S1). The phases of the 3C data components are shifted so that 

the true DOA inclination angle is 50q (Fig. S1a). Data are sampled at 100 Hz. We compute the 

SPM matrix using STFT with a 20-point (0.2 s) moving time window and a 1-point time shift. 

We decompose the SPM matrix for each time window and each quantized frequency and 

estimate CL and �̅�. Figure S1b and d show estimates of CL and �̅� in the time-frequency domain. 

There is a clear peak of linearity around the time of the P-wave arrival. The peak starts a little bit 

earlier than the exact arrival time of the P-wave due to the finite width of the moving time 

window. We can also observe that the color around the P-wave arrival and 10 Hz corresponds to 

DOA of about 50q. The mean values of CL and �̅� are calculated by averaging CL and �̅� from 5 to 

15 Hz, and shown in Figure S1c and e. 𝐶𝐿̅̅ ̅ and �̅� show the high linearity and the correct DOA 

inclination angle respectively at the time of the P-wave arrival. The proposed method therefore 

performs as intended on our simple synthetic example. 

 



 

 

 

2. Simple template matching (cross correlation) test 

For more comparison of our method with recent template matching methods (e.g., 

Gibbons and Ringdal 2006; Skoumal et al. 2014; Huang and Beroza 2015), we employed a 

simple template matching method. We used the entire waveforms of two (M1.9 and M2.2) 

catalog events. For simple computation, we selected a 10-sec common time window containing 

the event waveforms on all seismometers. These time windows contain P-wave, S-wave, and S-

coda of the template waveforms on the vertical component. Windows start from 748 to 758 sec 

and 3466 - 3476 from reference time (00:00:00.315 on 1st November 2016) for the M1.9 and 

M2.2 events, respectively. We compute the cross correlation coefficient (CC) between the 

reference wave windows and a moving time window of the same size. Since we use the same 

time window for all sensors, we can stack CC values among stations without moveout. Then, we 

set the threshold for detection in the same manner described for our method. Note that in the CC 

case we defined the thresholds for both CC values defined by two tenplates, and we did not show 

them in Table S1. 

The result is summarized in Table S1, which is an extended version of Table 2 in the 

main manuscript. 

 

3. Additional discussion for the performance of our method 

Figure S5 summarizes the detection performance of three different cf stacks showing each of the 

cf values for detected events (true and false alarms). The vertical axis correlates roughly with the 

size of the events (catalog events are largest, events detected by visual inspection are next 

largest, etc.). The results with cf12 and cf123 show that the detectability of the events 

systematically correlates with the cf value; e.g., larger events have higher cf value. Stack cf123 

shows the best relationship between cf value and empirical event size, which is a desired 



 

 

response for a detector. Meanwhile, cfall shows a range of values for the events detected by visual 

inspections, which means that cfall values do not correlate well with event size. We infer that cfall 

uses information from all boreholes and some of the information from more distant wells 

behaves like noise. From this evaluation of detector performance, cf123 is the best stack to use for 

event detection, as we mentioned in the Discussion part of the main manuscript. 

 

  



 

 

List of Supplemental Figure Captions 

Table S1. Complete table for comparing event detection using our method, STA/LTA, and 
template matching. Stacking methods for each method are described in the text. B1~6 are events 
detected by visual inspection, which we used as a benchmark to show that our method has 
detectability that is at least comparable to visual inspection. Low SNR1~7 are the low SNR 
events newly detected by our method that were not found by our initial visual inspection. 
Detection of these events means that a method performs better than visual inspection. FA is a 
false alarm. The 2nd column shows the rough rounded detected time for each detected event 
including false alarm. The last three rows summarize the detections made by the individual 
methods. As benchmarks, the detection results obtained using STA/LTA and template matching 
methods are also shown. 
 

Figure S1. Evaluation of linearity (CL) and DOA inclination (DOAinc) on synthetic waveforms. 
(a) synthetic waveforms containing sinusoidal wave and uncorrelated band limited white noise. 
(b) CL distribution in time and frequency. (c) CL (CL̅̅̅̅ ) averaged over 5~15 Hz. (d) DOAinc 
distribution in time and frequency. (e) DOAinc (DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅) averaged over 5~15 Hz. 
 

Figure S2. The shape of characteristic function to penalize the mismatch between measured 
DOA (DOAinc) and reference DOA (DOA0). 
 

Figure S3. Example of waveforms of false alarm that is detected just after M1.9 event by our 
method when using cfall, cf12, and cf123. The detection time is indicated in Figure 11 with a 
triangle marker immediately following the M1.9 event. Black lines are the onset of detection at 
the 4th level (200 m) sensor at station G67. 
 

Figure S4. Example of waveforms of false alarm that is detected just after M2.2 event by our 
method when using cfall, cf12, and cf123. The detection time is indicated in Figure 11 with a 
triangle marker immediately following the M2.2 event. Black lines are the onset of detection at 
the 4th level (200 m) sensor at station  G67. 
 

Figure S5. Detection performance with various characteristic functions. Detection results are 
shown as a function of the value of each cf. Vertical axis roughly correlates with event size. 
Colors of the dots indicate the different characteristic functions cf. 
 

 



 

 

Table S1. Complete table for comparing event detection using our method, STA/LTA, and template matching. Stacking methods for each method 
are described in the text. B1~6 are events detected by visual inspection, which we used as a benchmark to show that our method has detectability 
that is at least comparable to visual inspection. Low SNR1~7 are the low SNR events newly detected by our method that were not found by our 
initial visual inspection. Detection of these events means that a method performs better than visual inspection. FA is a false alarm. The 2nd 
column shows the rough rounded detected time for each detected event including false alarm. The last three rows summarize the detections made 
by the individual methods. As benchmarks, the detection results obtained using STA/LTA and template matching methods are also shown. 
 
  Our method STA/LTA Template matching 
Event Time from 

reference 
(sec) 

Stack all:  
cfall  
(0.2283) 

Stack 1-2: 
cf12  
(0.3204) 

Stack 1-3: 
cf123  
(0.3166) 

Stack all:  
STA/LTAall 
(0.2337) 

Stack 1-2: 
STA/LTA12 
(0.2821) 

Stack 1-3: 
STA/LTA123 
(0.2556) 

Stack all:  
CCall 

Stack 1-2: 
CC12 

Stack 1-3: 
CC123 

Catalog 
M1.9 

749 detected detected detected detected detected detected detected detected Detected 

FA 760 detected detected detected       
B2 763 detected detected detected    detected detected detected 
B5 997 detected detected detected detected detected detected detected detected detected 

Low SNR1 1144 detected detected detected       
B3 1958 detected detected detected detected detected detected detected detected detected 
B6 2195 detected detected detected       
FA 2449  detected        

Low SNR2 2830  detected detected     detected detected 
B4 3359 detected detected detected detected detected detected  detected detected 

Catalog 
M2.2 

3467 detected detected detected detected detected detected detected detected detected 

FA 3481  detected        
FA 3483  detected detected       

Low SNR3 3544 detected detected detected     detected detected 
Low SNR4 4106   detected       

FA 5883    detected  detected    
FA 5562  detected        



 

 

FA 6766 detected         
B1 7400 detected detected detected detected detected detected detected detected detected 

FA 9543  detected        
FA 9901          
FA 10223  detected        
FA 10226          

Low SNR5 11243 detected detected detected     detected detected 
FA 11760  detected        
FA 11770  detected        
FA 11776  detected        
FA 11995  detected        

Low SNR6 12918 detected detected detected       
Low SNR7 13341  detected detected       
Additional 
low SNR 
events 

 4 6 7 0 0 0 0 3 3 

False 
alarms 

 2 11 2 1 0 1 0 0 0 

Total  14 25 17 6 6 6 6 10 10 
 

 



 

 

 

Figure S1. Evaluation of linearity (CL) and DOA inclination (DOAinc) on synthetic waveforms. 
(a) synthetic waveforms containing sinusoidal wave and uncorrelated band limited white noise. 
(b) CL distribution in time and frequency. (c) CL (CL̅̅̅̅ ) averaged over 5~15 Hz. (d) DOAinc 
distribution in time and frequency. (e) DOAinc (DOAinc̅̅ ̅̅ ̅̅ ̅̅ ̅) averaged over 5~15 Hz. 



 

 

 

Figure S2. The shape of characteristic function to penalize the mismatch between measured 
DOA (DOAinc) and reference DOA (DOA0). 

 



 

 

 

Figure S3. Example of waveforms of false alarm that is detected just after M1.9 event by our 
method when using cfall, cf12, and cf123. The detection time is indicated in Figure 11 with a 
triangle marker immediately following the M1.9 event. Black lines are the onset of detection at 
the 4th level (200 m) sensor at station G67. 
 



 

 

 

Figure S4. Example of waveforms of false alarm that is detected just after M2.2 event by our 
method when using cfall, cf12, and cf123. The detection time is indicated in Figure 11 with a 
triangle marker immediately following the M2.2 event. Black lines are the onset of detection at 
the 4th level (200 m) sensor at station  G67. 
 

  



 

 

 

Figure S5. Detection performance with various characteristic functions. Detection results are 
shown as a function of the value of each cf. Vertical axis roughly correlates with event size. 
Colors of the dots indicate the different characteristic functions cf. 
 

 


