ERL Annual Meeting 05/21/2020

Earthquake Rupture Modeling: Fracturing vs. Friction

Ekaterina Bolotskaya PhD Candidate, Geophysics

Bradford H. Hager Advisor, Associate Director, Earth Resources Laboratory

Motivation

Joint theory of friction and fracturing for induced earthquakes:

Mineralization of parts of the fault, slip propagation includes breaking of locked sections (fault jogs and step overs) – fracturing along with frictional sliding on preexisting surfaces.

Computational complexity of rate-and-state and unclear physics behind the fitting parameters: Can we approximate rate-and-state dynamic rupture propagation results with something simpler: EPFM or slip-weakening friction?

Problem and solution

Problem:

Absence of joint theory of fracturing and friction that would be able to describe both brittle cracking and frictional sliding along the fault and delineate where the two are applicable.

Solution:

- Finite element numerical simulations
- Observing similarities and differences in stress, slip, friction coefficient, slip rate etc., trying to link fracture and friction theories
- Comparison with experimental results?

Earthquake cycle model

- 2D, plane strain
- Linear elastic material
- Boundary conditions: lithostatic compression and shear
- 3 fault sections: middle section – static friction $\mu = 0.6$; sides – slip-weakening $\mu_d = 0.6$, $\mu_s =$ 0.65
- Time scale: years for quasistatic part, seconds for dynamic part

Figure 3. Model geometry

Quasi-static cycle

- 3 cycles.
- Fault healing is enforced between the cycles.

Figure 4. Shear stress on the fault

Figure 5. Slip on the fault

Slip-weakening friction vs. fracturing

Fracture? Exponential cohesive zone

$$\mu = \mu_d + (\mu_s - \mu_d) \frac{(D + D_1)}{D_2} e^{1 - \frac{(D + D_1)}{D_2}}$$

Slip-weakening

$$\mu = \begin{cases} \mu_s - (\mu_s - \mu_d) \frac{D}{D_c} & D \le D_c \\ \mu_d & D > D_c \end{cases}$$

Rate-and-state

l'liī

Earth Resources Laboratory

$$\mu = \mu_0 + aln\left(\frac{V}{V_0}\right) + bln\left(\frac{V_0\theta}{L}\right)$$
$$\dot{\theta} = 1 - \frac{V\theta}{L}$$

6

• Slip distribution for dynamic rupture propagation

Fracture $G_{IIC} = 46.85$

Slip-weakening $\mu_s = 0.65, \ \mu_d = 0.6, \ D_c = 2.5e - 5$

Rate-and-state

Plii

Earth Resources Laboratory

a = 0.0029, b = 0.0043,

 $D_c = 0.2047e - 5, \ \mu_0 = 0.6145$

Figure 6. Slip on the fault

• Slip rate distribution for dynamic rupture propagation

Figure 7. Slip rate on the fault

Plii

Earth Resources Laboratory

Shear stress on the fault for dynamic rupture propagation

 $G_{IIC} = 46.85$

Fracture

Slip-weakening $\mu_s = 0.65, \, \mu_d = 0.6, \, D_c = 2.5e - 5$

Plii

Earth Resources Laboratory

a = 0.0029, b = 0.0043,

 $D_c = 0.2047e - 5, \ \mu_0 = 0.6145$

Figure 8. Shear stress on the fault

Rupture velocity and tip location for dynamic rupture propagation

Figure 9. Rupture tip velocity and location

Quantitative comparison - energy

• Energy determined as the area under the stress vs. slip curve:

Figure 10. Fracture energy

Earth Resources Laboratory

Phir

- Quasi-static models of earthquake cycle (slip-weakening instability) with fault healing between the cycles
- Dynamic part of the cycle modeled with Pylith slip-weakening subroutine; Pylith rate-and-state subroutine and a custom exponential cohesive zone model (fracture?)
- Exponential cohesive zone vs. slip-weakening vs. rate-and-state dynamic part:
 - Far field: very similar (virtually indistinguishable) observations for the specific case of equal fracture energies
 - Near field: minor differences in stress profiles, slip rates and slip distributions. Resolvable with experiments?
- These models can yield very different results if we don't actively fit parameters to obtain the same fracture energy

13

Work in progress

• Parametric studies: which model better reproduces specific earthquake / experimental observations? Are parameters used for fitting within physical range?

- Analytical expression for rate-and-state "fracture energy"
- Experiments on glued polycarbonate

$$G_c = \frac{\sigma b D_c}{2} \left[\ln \left(\frac{V \theta_i}{D_c \Omega} \right) \right]^2 \qquad \Omega \equiv \frac{V \theta}{D_c}$$

References

- Dieterich, J.H. 1979. "Modeling of rock friction 1. Experimental results and constitutive equations." Journal of Geophysical Research 84 2161-2168.
- Ruina, A. 1983. "Slip instability and state variable friction laws." Journal of Geophysical Research 88 10,359-10,370.
- Erickson, B., B. Birnir, and D. Lavallée. 2008. "A model for aperiodicity in earthquakes." Nonlinear Processes in Geophysics, European Geosciences Union (EGU) 15 (1) 1 -12.
- Fialko, Y. 2007. "Fracture and Frictional Mechanics Theory." In Treatise on Geophysics (Second Edition), 83-106. Elsevier B.V.
- Melin, S. 1986. "When does a crack grow under mode II conditions?" International Journal of Fracture 30 103 - 114.
- Kanamori, Hiroo, and Emily E Brodsky. 2004. "The physics of earthquakes." Reports on Progress in Physics 1429-1496.
- Wu, E. M., and R. C. Reuter Jr., "Crack Extension in Fiberglass Reinforced Plastics," T and M Report, University of Illinois, vol. 275, 1965

Questions?

Ekaterina Bolotskaya - bolee@mit.edu