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1.	Personnel	
	
Faculty:		
	
Name	 Rank	 Department(s)	 Role	in	ERL	
Laurent	Demanet	 Associate	professor	 Math	and	EAPS	 Director	
Herbert	Einstein	 Professor	 CEE	 	
Brian	Evans	 Emeritus	professor	 EAPS	 	
Bradford	Hager	 Professor	 EAPS	 Associate	director	
Thomas	Herring	 Professor	 EAPS	 	
Rob	van	der	Hilst	 Professor	 EAPS	 	
Ruben	Juanes	 Professor	 CEE	and	EAPS	 	
Youssef	Marzouk	 Associate	professor	 AeroAstro	 	
Dennis	McLaughlin	 Professor	 CEE	 	
Dale	Morgan	 Professor	 EAPS	 Associate	director	
Shuhei	Ono	 Associate	professor	 EAPS	 	
Matej	Pec	 Assistant	professor	 EAPS	 	
Nafi	Toksoz	 Emeritus	professor	 EAPS	 Founder	
John	Williams	 Professor	 CEE	 	
	
Research	scientists	with	principal	investigator	status:	
	
Name	 Rank	 Department(s)	 Role	in	ERL	
Stephen	Brown	 Research	scientist	 EAPS	 	
Daniel	Burns	 Research	scientist	 EAPS	 	
Michael	Fehler	 Senior	RS	 EAPS	 Deputy	director	
Aimé	Fournier	 Research	scientist	 EAPS	 	
Nori	Nakata	 Principal	RS	 EAPS	 	
Sai	Ravela	 Principal	RS	 EAPS	 	
	
Research	scientists	(other):	8	
Postdoctoral	scholars:	15	
Graduate	students:	42	
More	information:	https://erlweb.mit.edu/people	

	

	



2.	Introduction		

The	 Earth	 Resources	 Laboratory	 (ERL)	 is	 MIT’s	 home	 for	 geophysical	 research	
driven	by	 technological	 questions.	 The	 laboratory	 is	 comprised	 of	 a	 dozen	 faculty	
members	 and	 their	 groups,	 active	 in	 areas	 ranging	 from	 seismology	 to	
geomechanics,	rock	physics,	flows	in	porous	media,	and	methods	of	inversion,	
inference,	and	uncertainty	quantification.	

As	the	“information	revolution”	is	shaking	up	the	research	enterprise	in	many	fields,	
ERL	 is	 embracing	scientific	machine	 learning	as	 a	main	 research	 objective.	New	
tools	lead	to	new	questions,	such	as	

• Are	estimation	and	prediction	still	possible	when	the	physical	models	are	too	
coarse,	or	contain	too	much	uncertainty,	but	when	data	are	abundant?	

• How	can	we	bridge	the	“transfer	learning”	gap	from	synthetic	to	real	data,	or	
from	labeled	(rich)	to	unlabeled	(poor)	data?	

• Uncertainty	 quantification	 in	 machine	 learning:	 what	 level	 of	 confidence	
should	we	give	to	the	predictions	that	come	from	a	neural	network?	

• Is	 it	possible	 to	automate	 tasks	 that	otherwise	 require	a	human’s	ability	 to	
make	generalizations?	

Machine	learning	and	artificial	intelligence	will	only	succeed	in	the	sciences	if	their	
predictive	 power	 can	 outperform	 that	 of	 human-designed	 physical	 or	 statistical	
models.	 ERL	has	 a	 long-term	goal	 to	 identify	 the	questions	 in	 geophysics,	 broadly	
understood,	 where	 machine	 learning	 genuinely	 extends	 the	 reach	 of	 traditional	
predictive	models	and	data	processing.	You	will	find	examples	in	this	document.	

ERL's	 research	 activity	 has	 an	 important	 role	 to	 play	 in	 addressing	 some	 of	 the	
environmental	challenges	of	our	time,	for	instance,	via	the	design	of	next-generation	
capabilities	in	geothermal	engineering	and	carbon	sequestration.	

ERL’s	 sponsored	 projects	 are	 often	 interdisciplinary,	 and	 bring	 together	
complementary	 expertise	 from	 all	 over	 MIT.	 	 The	 lab	 is	 unique	 in	 being	 able	 to	
integrate	 theory	with	 physical	 evidence	 gathered	 from	 lab	 and	 field	 experiments.	
While	ERL	is	primarily	associated	with	the	department	of	Earth,	Atmospheric,	and	
Planetary	 Sciences	 (EAPS),	 some	 of	 its	 faculty	 members	 are	 affiliated	 with	 the	
departments	of	Civil	and	Environmental	Engineering;	Mathematics;	and	AeroAstro.	

Companies	can	join	ERL	as	founding	members	to	meet	our	students/postdocs,	and	
get	 to	 know	 their	 research	 (see	 benefits	 of	 membership).	 We	 are	 continuously	
looking	for	talented	people	to	join	the	lab	(see	our	openings	page).	Stay	in	touch	to	
learn	about	ERL's	livestreams	and	other	announcements:	our	social	media	are	listed	
at	https://erlweb.mit.edu/about.	

	We	welcome	your	feedback,	and	hope	to	see	you	soon	at	one	of	our	events!	



3.	Research	highlights	
	
Deep	learning	for	seismic	bandwidth	extension,	in	the	group	of	L.	Demanet	
	

	
	
Over	 the	past	 few	years,	L.	Demanet	and	his	group	have	explored	computationally	
synthesizing	 the	 missing	 low	 frequencies	 in	 seismic	 data,	 for	 the	 purpose	 of	
addressing	 the	 nonconvexity	 challenge	 of	 full	 waveform	 seismic	 inversion	 (FWI).	
With	Elita	Li,	they	were	the	first	to	produce	a	method	of	signal	processing,	called	the	
phase	 tracking	 method,	 to	 extrapolate	 the	 spectrum	 in	 unobserved	 bands.	 With	
Hongyu	Sun,	they	designed	a	deep	neural	network	to	further	improve	and	automate	
seismic	bandwidth	extension.	They	showed	that	such	extrapolated	data	can	usefully	
and	 robustly	 complement	 the	observed	data	 to	alleviate	 the	hardness	of	FWI,	 and	
converge	 to	 the	correct	 solution	 in	a	 range	of	useful	geophysical	 scenarios.	Figure	
above:	a	neural	network	trained	on	patches	of	the	Marmousi	community	model	can	
create	 the	 low	 frequencies	 of	 the	 BP	 2004	model	 below	 2Hz	 (center	 panel),	 and	
subsequently	produce	a	good	 initial	model	 for	FWI	 to	converge.	 (Left	panel:	 input	
high	frequencies.	Right	panel:	true	unknown	low	frequencies,	for	validation)	
	
	
Surprises	with	machine	learning,	in	the	group	of	J.	Williams	

	

	



In	December	2017,	student	Justin	Montgomery	co-authored	an	article	on	prediction	
of	tight	oil	well	productivity	that	was	the	first	to	properly	disentangle	the	effects	of	
new	 technology	 vs	 favorable	well	 placement	 for	 predicting	well	 production.	 They	
concluded	that	the	US	Department	of	Energy	had	vastly	overstated	the	size	of	the	US	
oil	reserves,	a	finding	for	which	they	made	the	news.	This	is	one	example	of	how	the	
group	 of	 John	 Williams	 is	 exploring	 how	 machine	 learning	 (ML)	 can	 be	 used	 to	
simulate	 physical	 systems.	Most	 physical	 systems	 are	 highly	 non-linear,	 and	 they	
show	 how	 to	 use	 ML	 to	 “correct”	 for	 such	 non-linearities	 as	 time	 evolves.	 Once	
trained,	the	ML	can	make	predictions	faster	than	a	traditional	PDE	simulator.	Figure	
above:	initial	results	predicting	the	behavior	of	a	chaotic	system.	
	
	
Focused	blind	deconvolution,	in	the	group	of	A.	Fournier	and	L.	Demanet	

	

	
	
Aimé	 Fournier	 and	 collaborators	 have	 had	 two	 major	 research	 activities.	 With	
MITEI	 funding	 aiming	 at	 monitoring	 carbon	 sequestration,	 they	 developed	 new	
cement-integrity	diagnostics	using	 casing	waveforms	 inferred	 from	borehole	data.	
With	 Equinor	 funding	 aiming	 at	 offshore	 drilling	 de-risking,	 they	 developed	 new	
data-analysis	 and	 inversion	 methods	 for	 MWD.	 “Focused	 blind	 deconvolution”	
(figure	right)	is	a	new	method	of	machine	learning	to	infer	the	true	Green	function	
(left)	of	a	Marmousi	impedance-model	segment,	using	only	drill-noise	VSP	records,	
without	industry-standard	(but	dubious)	assumptions	about	the	model	and	source.	
They	also	extended	seismo-electromagnetic	data	analysis	and	 focusing	 to	 severely	
constrained	borehole-acquisition	geometries,	with	 the	aim	 that	 inferred	resistivity	
structures	constrain	velocity	inversion.	



Scalable	solvers	for	the	3D	Helmholtz	equation,	in	the	group	of	L.	Demanet	
	
	

	
	
A	line	of	work	in	L.	Demanet's	group	concerns	the	design	of	truly	scalable	solvers	for	
fixed-frequency	computational	wave	propagation.	The	work	with	Leonardo	Zepeda-
Nunez,	Matthias	Taus,	and	others	was	the	first	to	show	that	it	is	possible	to	achieve	
runtimes	that	are	sublinear	in	the	number	N	of	grid	points,	on	parallel	clusters	with	
P	processors.	The	runtime	is	then	proportional	to	N/P,	with	limitations	on	the	size	
of	P	 that	were	progressively	 loosened	over	 the	past	 few	years.	The	algorithm	that	
makes	 this	 possible	 is	 called	 the	 method	 of	 polarized	 traces.	 Extensions	 of	 the	
method	also	deal	in	a	favorable	way	with	the	question	of	solving	M	>	1	problems;	in	
that	 case,	 the	 runtime	 can	 grow	 more	 slowly	 than	 proportional	 to	 M.	 These	
computational	 developments	 should	 help	 address	 one	 practical	 bottleneck	 of	
inverse	 scattering	 for	 seismology	 and	 other	 applications.	 Figures:	 a	 computation	
with	N	=	4e8,	on	the	SEAM	model,	which	runs	at	30s	per	right-hand	side.	
	
	
Emergence	of	anomalous	transport	in	stressed	rough	fractures,	in	the	group	of	
R.	Juanes	
	

			 	
	



Fractures	often	serve	as	fast	conduits	for	fluid	flow	and	transport.	The	way	in	which	
the	two	rough	surfaces	of	a	fracture	conform	to	each	other	depends	critically	on	the	
level	of	confining	stress.	While	the	impact	of	normal	stress	on	fluid	flow	through	a	
rough	 fracture	 has	 been	 studied	 before,	 its	 impact	 on	 particle	 transport	 has	 not.	
Here,	 the	 authors	 show	 that	 particle	 transport	 on	 a	 rough	 fracture	 exhibits	 a	
transition	 from	 normal	 (Fickian)	 to	 anomalous	 (non-Fickian)	 as	 the	 level	 of	
confining	 stress	 increases,	 as	 a	 result	 of	 self-organization	 of	 the	 flow	 into	
preferential	 channels	 and	 stagnation	 regions.	 They	 propose	 a	 parsimonious	
stochastic	 transport	 model	 that	 accounts	 for	 the	 correlated	 nature	 of	 the	 flow	
velocity,	 and	 captures	 the	 transition	 to	 anomalous	 transport	 quantitatively.	 P.	 K.	
Kang,	 S.	 Brown,	 and	 R.	 Juanes,	 Earth	 and	 Planetary	 Science	 Letters,	 454,	 46-54	
(2016),	doi:10.1016/j.epsl.2016.08.033.	(pdf)	
 
	
Sequential	 approach	 to	 joint	 flow-seismic	 inversion	 for	 improved	
characterization	of	fractured	media,	in	the	group	of	R.	Juanes	

	

	
Fracture	 characterization	 is	 a	 critical	 step	 for	 the	 design	 and	 risk	 assessment	 of	
many	subsurface	technologies,	including	nuclear	waste	disposal,	geothermal	energy	
production,	 and	 groundwater	 use.	 While	 seismic	 interpretation	 is	 essential	 to	
determine	subsurface	structures,	it	usually	cannot	constrain	the	medium’s	hydraulic	
properties,	especially	in	challenging	geologic	environments	like	naturally	fractured	
reservoirs.	 Here,	 the	 authors	 present	 a	 methodology	 for	 characterizing	 fractured	
geologic	 reservoirs	by	 integrating	 flow	and	 seismic	data,	which	 relies	 critically	on	
the	mechanistic	 relation	between	 fracture	 compliance	 and	 fracture	 transmissivity.	
Their	 novel	 seismic	 inversion	method	 provides	 the	 structural	 organization	 of	 the	
fracture	compliance	field,	and	inversion	with	flow	data	constrains	the	rock	physics	
model	and	the	seismic	error	model.	By	 incorporating	dynamic	flow	measurements	
into	 the	 seismic	 interpretation,	 they	 reduce	 the	 uncertainty	 in	 the	 seismic	
interpretation	and	dramatically	improve	the	predictive	ability	of	the	reservoir	flow	
models.	 P.	 K.	 Kang,	 Y.	 Zheng,	 X.	 Fang,	 R.	 Wojcik,	 D.	 McLaughlin,	 S.	 Brown,	 M.	 C.	
Fehler,	D.	R.	Burns,	and	R.	Juanes,	Water	Resources	Research,	52(2),	903–919	(2016),	
doi:10.1002/2015WR017412.	(pdf)	
	



Quantitative	 nonlinearity	 in	 the	 subsurface,	 in	 the	 group	 of	S.	 Brown	 and	 D.	
Burns	

	
	

					 	
	
	
Like	 in	medical	 imaging,	 multi-wave	 physics	 and	 nonlinear	 elasticity	 can	 provide	
new	pathways	for	detection	and	monitoring	of	subtle	features	of	importance	in	the	
subsurface.	S.	Brown	and	collaborators	successfully	adapted	and	applied	principles	
from	 elastography	 and	 harmonic	 imaging	 to	 measure	 elastic	 nonlinearity	
parameters	 in	 rocks,	 which	 are	 sensitive	 to	 pore	 structure	 changes,	 variations	 in	
pore	 fluids	and	saturation	 levels,	and	to	damage	and	stress.	 In	work	on	sandstone	
samples,	 they	 have	 been	 able	 to	 quantify	 nonlinear	 behavior	 using	 time	 of	 flight	
transmission	 measurements.	 	 They	 now	 are	 looking	 at	 analysis	 methods	 using	
higher	harmonics	 that	would	be	more	adapted	to	 field	scale	reflection	geometries.	
Applications	 include	 carbon	 capture	 and	 sequestration,	 hydrofracture	 operations	
and	 re-injection	 of	 hydrofracture	 fluids,	 enhanced/improved	 oil	 recovery,	
groundwater	 remediation,	 and	 geothermal	 field	 operations.	 Figure,	 left:	 the	
spectrum	 of	 higher	 harmonics	 generated	 by	 a	 single	 harmonic	 source.	 Right:	 the	
Autolab	 pressure	 chamber	 in	 B.	 Evans's	 laboratory,	 which	 can	 recreate	 the	
pressures	and	temperature	present	downhole.	
	
	
Dissolution	Processes	in	the	Rock	Matrix	and	in	Rock	Fractures,	in	the	group	of	
H.	Einstein	
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Rock	 dissolution	 processes	 occur	 in	 nature	 (Karst)	 and	 in	 acid	 stimulation	 of	
hydrocarbon	 reservoirs	 as	well	 as	 in	 CO2	 sequestration.	 Laboratory	 core	 flooding	
experiments	with	a	new	device	 that	 continuously	measures	effluent	concentration	
are	used	to	observe	wormhole	development	and	fracture	enlargement	 in	Gypsum-
Water	 analogs.	On	 the	basis	of	 these	experiments	models	have	been	developed	 to	
predict	 the	 dissolution	 processes	 and	 their	 consequences	 on	 pore-	 and	 fracture	
geometry.	
	
	
Moment	Tensor	Inversion	of	Induced	Seismic	Events,	in	the	group	of	M.	Fehler	
	

	
	
Most	 modern	 approaches	 for	 inferring	 the	 moment	 tensors	 involve	 an	 inversion	
where	measured	waveforms	are	compared	with	waveforms	predicted	from	models	
simulated	for	a	given	set	of	fault	parameters	and	velocity	structure.	This	inversion	is	
challenging	 due	 to	 the	 limited	 amount	 of	 data	 that	 are	 usually	 available,	 and	
uncertainties	 in	 the	 velocity	 model	 that	 can	 strongly	 impact	 the	 predicted	
waveforms.	 	 The	 authors	 have	made	progress	 by	 using	 a	Bayesian	 formulation	 to	
obtain	 reliable	 estimates	of	 the	uncertainty	of	 the	 results	based	on	 the	 input	data	
and	prior	information,	and	the	incorporation	of	additional	data	about	the	reservoir	
as	a	constraint	on	the	inversion.	Figure	1	shows	an	example	of	how	they	can	use	in	
situ	stress	information	to	constrain	the	focal	mechanism	determined	from	waveform	
first	motions.	The	 left	panel	 shows	a	 lower	hemisphere	projection	of	 the	 range	of	
focal	mechanisms	 that	 are	 consistent	with	 the	 first	motion	 data	 from	 an	 induced	
seismic	 event.	 Each	 +	 represents	 the	 pole	 to	 a	 focal	 mechanism	 plane	 that	 is	
consistent	with	 the	 data.	 There	 is	 a	wide	 range	 of	 possible	 solutions.	 The	middle	
panel	 shows	 schematically	 the	 pore	 pressure	 required	 for	 each	 possible	 plane	 to	
experience	slip	given	the	known	in	situ	stress	field.	Blue	represents	regions	of	lower	
pore	pressure.	The	red	lines	show	the	boundaries	of	the	regions	where	planes	may	
slip	at	a	given	known	pore	pressure	determined	from	the	pumping	history.	The	right	
panel	 shows	 the	 range	 of	 possible	 slip	 planes	 that	 are	 consistent	 with	 the	 first	
motion	data,	the	stress	field	and	the	injection	pressure.		
	
	
	



	
4.	Vision	
	
Machine	learning	(ML)	is	a	common	theme	behind	much	of	the	proposed	research	
activity	in	ERL.	Possible	topics	for	future	investigation	include:	
		
• How	to	make	sense	of	ambient	seismic	noise.		The	idea	is	to	design	new	data	

processing	methods	 for	 ambient	 seismic	noise,	 in	 order	 to	 extract	 information	
that	 the	 current	 method	 of	 choice,	 cross-correlations	 of	 nearby	 stations,	 is	
unable	to	access.	One	limitation	has	been	the	inability	to	deal	with	non-isotropic	
random	sources	of	waves.	Demanet's	group	obtained	early	indications	that	deep	
neural	 networks	 can	 deal	 with	 this	 scenario,	 and	 moreover	 determine	 the	
directional	 dependence	 of	 the	 noise	 source	 in	 the	 far	 field	 itself.	 Another	
limitation	 has	 been	 the	 incomplete	 understanding	 of	 the	 underlying	 physics,	
which	 hinders	 the	 ability	 to	 make	 predictions	 of	 parameters	 like	 velocity	
changes	 in	 a	 reservoir.	 Nakata's	 group	 has	 obtained	 evidence	 that	 machine	
learning	(SVM)	can	offer	a	meaningful	forecast	from	environmental	data,	even	in	
the	 absence	 of	 physical	 models	 (figure).	 As	 a	 result,	 new	 processing	methods	
should	 unlock	 information	
that	 was	 not	 previously	
known	 to	 be	 present	 in	
noisy	 seismogram	
recordings.	 	 Providing	
starting	 models	 for	 full	
waveform	 inversion	 is	 one	
important	 end-goal	 of	 any	
new	 method	 of	 analyzing	
ambient	seismic	noise	

	
• Deep	 learning	 upscaling.	 Current	 upscaling	 practice	 consists	 in	 solving	

differential	equations	at	the	fine	scale,	in	order	to	obtain	effective	parameters	to	
be	used	 in	differential	equations	at	 the	coarse	scale.	 In	 this	project,	we	plan	 to	
explore	deep	neural	networks	as	an	alternative	point	of	view,	with	less	reliance	
on	the	disciplinary	scientist.	 In	particular,	we	plan	to	consider	two-phase	flows	

in	 porous	 media.	 The	 traditional	
point	of	view	is	to	use	the	Navier-
Stokes	equations	at	the	mesoscale,	
determine	 permeability	 and	
viscosity	 for	 use	 in	 some	 form	 of	
Darcy's	 law,	 and	 set	 up	

homogenized	models	 like	 Buckley-Leverett	 at	 the	macro	 scale.	 The	 validity	 of	
these	 equations	 is	 dubious	 in	 the	 two-phase	 case,	 and	 does	 not	 account	 for	
hysteresis	or	capillary	effects.	 Instead,	we	propose	conditional	autoencoders	to	
replace	 the	 very	 notions	 of	 physical	 models	 and	 effective	 parameters	 with	
standard	 constructs	 from	 machine	 learning:	 encoder/decoder,	 and	 latent	
variables.		
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• The	transfer	learning	bridge.	The	prospect	of	"scientific	machine	learning	"	as	

a	meaningful	discipline	poses	a	range	of	fundamental	questions.	Prediction	with	
neural	networks	can	be	risky	because	1)	real	data	may	not	be	abundant	enough	
for	training,	and	2)	simulations	are	abundant,	but	may	not	be	close	enough	to	the	
real	data	to	be	useful	for	training.	These	issues	arise	for	inversion	of	any	kind	of	

geophysical	 data,	where	 deep	 nets	 are	meant	
to	replace	physical	laws.		The	proposed	idea	is	
to	 design	 methods	 of	 deep	 learning	 called	
transfer	 learning,	 that	 explicitly	 hardcode	 the	
similarity	between	real	and	simulation	data	in	
the	feature	space.	It	 is	related	to	the	notion	of	
semi-supervised	 learning.	 Figure:	 labels	 are	
only	 available	 for	 part	 of	 the	 data,	 yet	 are	
needed	on	the	whole	dataset.	

	
• Uncertainty	 quantification	 for	 ML.	 The	 concept	 in	 the	 previous	 bullet	 point	

would	be	one	facet	of	a	broader	community	effort	--	very	much	in	its	infancy	--	to	
address	 uncertainty	 quantification	 FOR	 scientific	machine	 learning.	 Just	 as	we	
consider	 the	 validity	 of	 our	 physical	 models,	 and	 of	 inversions	 or	 predictions	
made	with	 these	models,	 we	 need	 to	 ascribe	 some	 level	 of	 confidence	 to	 any	
predictions	 or	 inferences	 built	 on	 ML	 models	 or	 architectures.	 With	 the	
proliferation	 of	 new	 techniques,	 the	 need	 for	 considering	 the	 statistical	
foundations	 and	 interpretations	 of	 any	 models	 we	 employ	 (whether	 they	 are	
misfit	 functions	 for	 inversion,	 discrepancy	 terms	 describing	 the	 mismatch	
between	deep	net	predictions	 and	data,	 new	ensemble	 filtering	 techniques),	 is	
even	 greater.	 As	 practitioners	 blaze	 ahead,	 academia	 needs	 to	 ask	 the	 hard	
question:	 When	 or	 why	 are	 predictions	 from	 ML	 not	 merely	 accidentally	
accurate?	

	
• Machine	 learning	 for	 induced	 seismicity.	 Machine	 learning	 has	 a	 lot	 of	

potential	 to	 replace	 current	 processing	 techniques	 for	 induced	 and	 triggered	
microseismic	 data,	 e.g.,	 for	 forecasting	 future	 events.	Migration-based	 imaging	
(e.g.,	Nakata	and	Beroza,	2016)	can	be	used	as	an	input	for	machine	learning	to	
simultaneously	 locate	 and	 detect	 microseismicity.	 Finding	 location	 and	



estimating	 characterization	 of	 events	 is	 considered	 an	 inverse	 problem,	 and	
machine	 learning,	with	 careful	 parameter	 tuning	 and	 training,	 can	 surpass	 the	
limit	of	the	conventional	inversion	resolution	(Kim	and	Nakata,	2018).	Denoising	
and/or	 big-data	 based	 on	 machine	 learning	 are	 also	 the	 future	 of	 wavefield	
analyses.		

	
• Laboratory	 and	 field	 experiments:	 rock	 fractures.	 The	 labs	 of	 Herbert	

Einstein	and	Brian	Evans	provide	a	combination	of	expertise	and	capabilities	in	
rock	physics	that	is	unique	
to	 the	 Earth	 Resources	
Laboratory.	 Disciplinary	
grounding	and	quality	data	
are	 essential	if	 one	wishes	
to	 make	 progress	 in,	 e.g.,	
any	 of	 the	 projects	
mentioned	 earlier.	 The	
labs	 study	 hydraulic	
fracturing	

with	 simultaneous	 visual	 and	 acoustic	 emission	 monitoring,	
dissolution	 processes	 with	 core	 flood	 experiments	 and	 CT	
scanning,	 fracture	 flow	 experiments,	 etc.,	 with	 the	 ability	 to	 see	
what	happens.	Rock	fracturing	can	be	controlled	in	the	lab,	and	it	
is	 intended	 to	 eventually	 apply	 these	 processes	 to	 control	 rock	
fracturing	 in	 the	 field	 as	 well.	 This	 will	 have	 applications	 in	
petroleum	 engineering,	 natural	 hazards	 and	 civil	 engineering.	
	

	
This	 list	 is	 not	 an	 exhaustive	 representation	 of	 the	 vision	 of	 every	 group	 in	 ERL.	
Contacting	 individual	 PIs	 is	 the	 best	 way	 to	 obtain	 proposal-like	 materials.	 Your	
membership	 in	 the	 ERL	 consortium	will	 go	 a	 long	way	 toward	maintaining	 ERL's	
ability	to	meet	its	research	goals,	although	it	 is	not	a	guarantee	that	any	particular	
topic	will	be	explored.	For	more	information:	https://erlweb.mit.edu/	


