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Reservoir production/injection induced seismicity

Groningen earthquakes, gas
production induced.

Oklahoma earthquakes,
waste water disposal
induced.

Number of Earthquakes per year

Oklahoma Earthquakes Magnitude 3.0 and greater

= USGS

Includes 30 quakes M4.0-4.7

Includes 15 quakes M4.0-4.4

Includes 8 quakes M4.0-4.8; 1 quake M5.1

Includes 3 quakes M4.0-4.8; 1 quake M5.6
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Defmod code is supposed to

o Capture poro-visco-elasticity processes due to fluid
injection/production, viscoelastic flow and external
loadings;

@ When failure criterion is met, allow the fault to have
frictional slip, accompanied by seismic radiation;

o Exchange the fault slip and stress perturbation between
the quasi-static and dynamic solvers, forming a hybrid
solver.

o History match the earthquake event occurrence and
waveforms.
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Hybrid solver flowchart

.| quasi-static
solver

parent

The hybrid model will ; ;
return to the quasi-static I ) G
(parent) loop once the ' '
dynamic run is over.

il static solver
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Dynamic fault slip schematic

Nucleation starts at a fault patch.

:
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Dynamic fault slip schematic

Slip and stress concentration.

i
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Dynamic fault slip schematic

Rupture propagation.

Summary

Backups



Introduction Hybrid solver for periodical fault rupture Governing equations Hybrid model Summary Backups
000 0000@0000 000 0000000000

Dynamic fault slip schematic

More slip.

_f3
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Dynamic fault slip schematic

Shear stress drop and rupture arrest.
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Fault constraint

Coinciding nodes on the fault belong to different elements.

n t
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For locked and permeable fault,

k t 0 -t -t O

neo np, 0 —-n, —n, 0O
o o1 0 0 -1

For slipping and permeable fault,

nc n, 0 —ny —n, O pM _o
001 0 0 1| @] "
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For locked and impermeable fault,

Ny Ny —Ny —N; u;
bt b —t] |

For slipping and impermeable fault,

[Ny nz —nx —ng]

A compact linear constraint equation can be written as
GU =1,

where, G is constraint matrix, | is constraint function, nonzero
for prescribed slip (pressure jump).
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U=F (quasi-)static,

governing equation . . .
Mu + Cu + Ku =f dynamic,

where,
o K, M and C are stiffness, mass and damping matrices;

o U is the solutions vector, e.g. U = [ : } displacement and

pressure for poroelastic problem:;

o Fis exterior load, e.g. F = [ :I ],force and flow rate.

Backups
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Write the time dependent quasi-static equation in the compact
form:
KUn - Fn.

The constrained equation can be written as
K GT Un _ Fn
G 0 D VO R N PO

@ nis the time step index, and A, is Lagrange Multiplier, i.e.
the nodal force/flux needed to let the solution honor the
constraint function 1, .

@ Solution is solved by inverting the global matrix.
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With the unconstrained solution obtained from the Newmark
method,

u, =M" ((Atzfn —Ku,_1) — AtC (u,_1 — Un_g)) +2U,_1—Up_».

The Forward Increment Lagrange Multiplier method [Carpenter
et al. 1991] is applied to impose the constraint,

-1
A= (AtzGM*1GT) (Gu, — 1),
u, =u, — APM'G" .
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Function and benchmark
functionality method benchmark
implicit,
poroelasticity pore pressure Mandel
stabilization
viscoelastic implicit Abaqus
power law
(quasi)static Lagrange Mohr-Coulomb
constraint Multiplier
elastodynamic | forward increment
constraint Lagrange Multiplier SCEC
absorbing viscous damping

fault/faulting

implicit/explicit

Backups
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SCEC benchmark

SCEC benchmark problem TPV5: Strike-slip rupture on a
heterogeneously stressed fault patch.

Backups
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Fault slip rate magnitude [m/s]

o t = 0.00 [s]
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Rupture front comparison against EqSim (Pylith) and SGFD
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Waveform comparison for station 1.
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3D quasi-static loading and fault rupture

Hybrid output: seismic radiation, velocity magnitude [m/s].
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Hybrid output: quasi-static state after failure, x displacement
[m] discontinuous across fault.

Backups



Introduction Hybrid solver for periodical fault rupture Governing equations Hybrid model Summary Backups
000 000000000 000 0000000800

2D production induced earthquake

Quasi-static output: fault traction and pressure.

@ Production/shut-
in is indicated by
pressure
perturbation.

o Contact
force/traction
always appears
in symmetric
pairs.
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Induced earthquake: dynamic output for a small event.

o 2D plot of the velocity
magnitude.

o 1D (fault profile) plot of
the slip rate. t=omis

=20
fault tkm]
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Induced earthquake: dynamic output for a large event.

o 2D plot of the velocity
magnitude.

o 1D (fault profile) plot of
the slip rate.

=X
fault (km]

Backups
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Summary

o The model adaptively switches between (quasi-)static and
dynamic states describing the induced earthquake cycles.
o The model functionalities are well benchmarked against
established results.
Future work

@ The model will be used for history matching the induced
earthquake occurrence and waveforms in Groningen.

@ Once a reasonable history match is achieved, the model is
capable of predicting induced seismic risks for given
scenarios of production/injection.

Backups
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Code availability

GNU General Public License, for bug report and contribution:

o Stable code:
https://bitbucket.org/stali/defmod

o Developer version: https:
//bitbucket.org/chunfangmeng/defmod-dev

Backups
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Poroelastic equation

The production/injection is typically of the time scale much
longer than the seismic events. Such process can be
considered quasi-static. The incremental loading scheme for
poroelasticity [Smith and Griffiths, 2004] with the source and
storage terms for the fluid:

Ke H AUn _ Afn
—H" AtK:+S| | Apy | | dn— AtKepn_1

Where, K¢ and K. are the solid and fluid stiffness matrices; H is
the coupling matrix; S is the storage matrix, Af and q are the
nodal force increment and the fluid flux during one time step
At. Absolute solution at step n:

U,_ Au
U. — n—1 ] [ n]
" [ Pn—1 * Apn

where, u,_4 and p,_1 are the pressure of previous step.
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Stabilizing fluid pressure

Unstable pressure is caused by using linear element known as
the Ladyzenskaja-Babuska-Brezzi restrictions.

0
| .
-1e+06 Pressure (Pa) 1e+06

Pore pressure changes, 2D triangular element domain,
following co-seismic slip on a thrust fault, with (left) and without
(right) stabilization.
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Local pressure projection scheme [Bochev and Dohrmann,
2006] is implemented to stabilize the pore pressure, [White and
Borja, 2008] for quad/hex element.

0
Fn+1 :Fn+1 - |: Hspn :| )

0 0
Kt :K”“+[o HJ’

where,

H = [ (N (1/ne)h)"(N = (1/ne)h)/(2G)d2
where, N is the shape function; (-) is a function averaged over
all nodal points of each element; G is the shear modulus; 7scaje
is a scale constant.
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Poroelastic benchmark: Mandel solution

[M. Kurashige et al. 2004]

Mandel Cartesian Mandel cylindrical
toy(r) tOH(t)
‘7
-j'.\ Lr
._’ a

r=a:6,=0p=0
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normalized pressure at different time
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Pressure at origin, 2D vs 3D

normalized pressure at origin (r =0)
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Static fault model benchmark

Summary Backups

Anisotropic loading model: Incrementally load the sample at the
rate of Aoy = Aoy = 0.2 MPa/yr. At year 50, stop the loading
increment in the horizontal direction, and keep the increment in
the vertical direction until year 150.

o, | T
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Stress ratio 7/oq calculated by Defmod at different depth and
time against the analytical values.
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Viscoelastic problem

The stiffness matrix and RHS vector of a viscoelastic media
have [Melosh and Raefsky 1980]

K1 —/ BT(D™" + aAt3,) 'BdQ
Q

Fop1 = /Q BT(D + aAtB),) " (AtB,)d + Fpys

where, B is displacement to strain matrix depending on the
element geometry, D is the element stiffness matrix depending
on the elastic constants,

B(O’): 477 CC:O-a 6217

o= Zo',,—a” (2d) + 0'3., d=2or3,
i#

Backups
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Viscoelastics: 3 and 3’

06—1
B(oc) =——=C;: 0o
4n
(1 -1 o0
—1 1 of, 2D!
0 0 4
r4/3 —2/3 -2/3
Cc=!|-2/3 453 —2y3 0
2/3  —2/3  4/3 3D
4 )
0 4
L 4
e—1 Cq —Cq C3
g —cy ¢ —c3 2D1
4n | C3 —C3 4co
[ 4/3+52 —2/3+ 58y, —2/3+5S, STy ST ST
,6’ = —2/3+ 55y 4/3+ 8 —2/3+5/8, STy ST, STy
' | —2/3+ 58, -2/3+8,S, 4/3 + S2 ST S:T, S:Ts 3D
4n STy STy STy 4+T2 T, T | ’
ST ST, STy LTy 4+TF  TTs
L STy STs S; Ty 3T TaT, 44 T2
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¢ =1+ (e—1)((ox — oyy)/(20))

c=1+(e— 1)(0’Xy/0)2

c3=(e—1)(oxoyy — cryya'xy)/02

Sx =C(20xx — oyy — 022)/(30) where ¢ = ve —1
Sy =c(20yy — 02, — oxx)/(30)

Sz =¢(20,; — oxx — ayy)/(30)

Ty =2coyy /o, To = 2Coy; /0, T3 = 2Coxz /0
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o Whene=1,3 = incc, the matrix K, is then independent
of o and n, as long as the step length At is a constant. In
this case we only need to assemble the viscoelastic
stiffness matrix K once for the first step, and keep updating
the RHS F,. When e > 1 however, both the stiffness
matrix and RHS need to be reassembled for every step.

o Since the scale factor « and the effective viscosity n always
appear as %, they are treated as one parameter.
Therefore, in addition to the elastic constants, two
parameters, e and n, need to be specified.
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Viscoelastic benchmark

Slip on a strike-slip fault: Elastic crust over viscoelastic mantle.
Only a part of model domain is shown.

Slip (m)
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Comparison against Abaqus att=0and t = 10 years. The
displacement is plotted along a trajectory perpendicular to the
fault plane through the viscoelastic layer.
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Explicit solver for the seismic radiation

Mu + Cu + Ku = f,

where, M is mass matrix; C = oM + gK is damping matrix; o
and g are Rayleigh damping coefficients. Newmark explicit
scheme has,

Un = M_1 ((Atzfn - KUn_‘]) - Atc (Un_1 - Un_2)>+2u,—;_1 —Un_2
The incremental form,

Aup =M~ ((AtzAfn — KAu,_+)
— Atc (AUn_‘] - AUn_z)) + 2Au,7_1 - AUn_z



Introduction Hybrid solver for periodical fault rupture Governing equations Hybrid model Summary Backups
000 000000000 000 0000000000

Absorbing boundary

[Lysmer and Kuhlemeyer, 1969] propose that the absorbing
boundary for the elastodynamic model can be achieved by
adding additional terms to the damping matrix as,

for all j-axes.

~_Jai+ [rpVpdl, pwave | i axis,
! ci+ [rpVsdl', pwave L " axis,

Assuming small incident angles

(8 < 30°), that the p-wave can

be considered roughly

perpendicular to the absorbing

boundary. Therefore, this z
addition is irrespective to the

coming wave directions.
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TVP 5 wave forms

Waveform comparison for station 2.
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TVP 5 wave forms

Waveform comparison for station 3.

Hybrid model Summary

0000000000
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Backups



Introduction Hybrid solver for periodical fault rupture Governing equations Hybrid model Summary Backups
000 000000000 000 0000000000

TVP 5 wave forms

Waveform comparison for station 4.
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Performance

Subduction, ~ 8 m
elements, implicitly
solved, under 120

Secs.

Thrust fault, ~ 6 m
elements, 2000
explicit steps,
under 60 secs.
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Winkler Foundation

Winkler Foundation is to consider the gravity caused anisotropy
by adding linear springs in the gravity direction. The element
stiffness matrix is therefore modified by

1 . . — =
kP = klP) 4 n/ pgdrg, for p € T4, M axis || g,Tq L g,
P JTg

where, np is the number of Gauss points on the facet I'y.
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