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Reservoir production/injection induced seismicity

Groningen earthquakes, gas
production induced.

Oklahoma earthquakes,
waste water disposal
induced.
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Defmod code is supposed to

Capture poro-visco-elasticity processes due to fluid
injection/production, viscoelastic flow and external
loadings;
When failure criterion is met, allow the fault to have
frictional slip, accompanied by seismic radiation;
Exchange the fault slip and stress perturbation between
the quasi-static and dynamic solvers, forming a hybrid
solver.
History match the earthquake event occurrence and
waveforms.
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Hybrid solver flowchart

The hybrid model will
return to the quasi-static
(parent) loop once the
dynamic run is over.
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Dynamic fault slip schematic

Nucleation starts at a fault patch.
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Dynamic fault slip schematic

Slip and stress concentration.
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Dynamic fault slip schematic

Rupture propagation.
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Dynamic fault slip schematic

More slip.
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Dynamic fault slip schematic

Shear stress drop and rupture arrest.
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Fault constraint

Coinciding nodes on the fault belong to different elements.
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For locked and permeable fault,

nx nz 0 −nx −nz 0
tx tz 0 −tx −tz 0
0 0 1 0 0 −1
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For slipping and permeable fault,
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For locked and impermeable fault,

[
nx nz −nx −nz
tx tz −tx −tz

]
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For slipping and impermeable fault,

[
nx nz −nx −nz

]

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u(3)
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u(3)
z

 = 0,

A compact linear constraint equation can be written as

GU = I,

where, G is constraint matrix, I is constraint function, nonzero
for prescribed slip (pressure jump).
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governing equation

{
KU = F (quasi-)static,
Mü + Cu̇ + Ku = f dynamic,

where,
K, M and C are stiffness, mass and damping matrices;

U is the solutions vector, e.g. U =

[
u
p

]
displacement and

pressure for poroelastic problem;

F is exterior load, e.g. F =

[
f
q

]
, force and flow rate.
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Write the time dependent quasi-static equation in the compact
form:

KUn = Fn.

The constrained equation can be written as[
K GT

G 0

] [
Un
λn

]
=

[
Fn
In

]
,

n is the time step index, and λn is Lagrange Multiplier, i.e.
the nodal force/flux needed to let the solution honor the
constraint function In .
Solution is solved by inverting the global matrix.
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With the unconstrained solution obtained from the Newmark
method,

un = M−1
(

(∆t2fn − Kun−1)−∆tC (un−1 − un−2)
)

+2un−1−un−2.

The Forward Increment Lagrange Multiplier method [Carpenter
et al. 1991] is applied to impose the constraint,

λn =
(

∆t2GM−1GT
)−1

(Gun − In) ,

un =un −∆t2M−1GTλn.
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Function and benchmark

functionality method benchmark
implicit,

poroelasticity pore pressure Mandel
stabilization

viscoelastic implicit Abaqus
power law

(quasi)static Lagrange Mohr-Coulomb
constraint Multiplier

elastodynamic forward increment
constraint Lagrange Multiplier SCEC
absorbing viscous damping

fault/faulting implicit/explicit
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SCEC benchmark

SCEC benchmark problem TPV5: Strike-slip rupture on a
heterogeneously stressed fault patch.
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Fault slip rate magnitude [m/s]
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Rupture front comparison against EqSim (Pylith) and SGFD.
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Waveform comparison for station 1.
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3D quasi-static loading and fault rupture

Hybrid output: seismic radiation, velocity magnitude [m/s].
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Hybrid output: quasi-static state after failure, x displacement
[m] discontinuous across fault.
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2D production induced earthquake

Quasi-static output: fault traction and pressure.

Production/shut-
in is indicated by
pressure
perturbation.
Contact
force/traction
always appears
in symmetric
pairs.
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Induced earthquake: dynamic output for a small event.

2D plot of the velocity
magnitude.
1D (fault profile) plot of
the slip rate.
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Induced earthquake: dynamic output for a large event.

2D plot of the velocity
magnitude.
1D (fault profile) plot of
the slip rate.
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Summary
The model adaptively switches between (quasi-)static and
dynamic states describing the induced earthquake cycles.
The model functionalities are well benchmarked against
established results.

Future work
The model will be used for history matching the induced
earthquake occurrence and waveforms in Groningen.
Once a reasonable history match is achieved, the model is
capable of predicting induced seismic risks for given
scenarios of production/injection.
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Code availability

GNU General Public License, for bug report and contribution:
Stable code:
https://bitbucket.org/stali/defmod

Developer version: https:
//bitbucket.org/chunfangmeng/defmod-dev

https://bitbucket.org/stali/defmod
https://bitbucket.org/chunfangmeng/defmod-dev
https://bitbucket.org/chunfangmeng/defmod-dev
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Poroelastic equation

The production/injection is typically of the time scale much
longer than the seismic events. Such process can be
considered quasi-static. The incremental loading scheme for
poroelasticity [Smith and Griffiths, 2004] with the source and
storage terms for the fluid:[

Ke H
−HT ∆tKc + S

] [
∆un
∆pn

]
=

[
∆fn

qn −∆tKcpn−1

]
Where, Ke and Kc are the solid and fluid stiffness matrices; H is
the coupling matrix; S is the storage matrix, ∆f and q are the
nodal force increment and the fluid flux during one time step
∆t . Absolute solution at step n:

Un =

[
un−1
pn−1

]
+

[
∆un
∆pn

]
where, un−1 and pn−1 are the pressure of previous step.
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Stabilizing fluid pressure

Unstable pressure is caused by using linear element known as
the Ladyzenskaja-Babuska-Brezzi restrictions.

Pore pressure changes, 2D triangular element domain,
following co-seismic slip on a thrust fault, with (left) and without
(right) stabilization.
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Local pressure projection scheme [Bochev and Dohrmann,
2006] is implemented to stabilize the pore pressure, [White and
Borja, 2008] for quad/hex element.

Fn+1 =Fn+1 −
[

0
Hspn

]
,

Kn+1 =Kn+1 +

[
0 0
0 Hs

]
,

where,

Hs =

∫
Ω

(N− (1/ne)IN)T(N− (1/ne)IN)/(2G)dΩ,

,

where, N is the shape function; (·) is a function averaged over
all nodal points of each element; G is the shear modulus; τscale
is a scale constant.
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Poroelastic benchmark: Mandel solution

[M. Kurashige et al. 2004]

Mandel Cartesian Mandel cylindrical
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Pressure at origin, 2D vs 3D
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Static fault model benchmark

Anisotropic loading model: Incrementally load the sample at the
rate of ∆σH = ∆σV = 0.2 MPa/yr. At year 50, stop the loading
increment in the horizontal direction, and keep the increment in
the vertical direction until year 150.
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Stress ratio τ/σn calculated by Defmod at different depth and
time against the analytical values.
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Viscoelastic problem

The stiffness matrix and RHS vector of a viscoelastic media
have [Melosh and Raefsky 1980]

Kn+1 =

∫
Ω

BT (D−1 + α∆tβ′n)−1BdΩ

Fn+1 =

∫
Ω

BT (D−1 + α∆tβ′n)−1(∆tβn)dΩ + Fn+1

,

where, B is displacement to strain matrix depending on the
element geometry, D is the element stiffness matrix depending
on the elastic constants,

β(σ) =
σe−1

4η
Cc : σ, e ≥ 1,

σ =

√∑
i 6=j

(σii − σjj)2/(2d) + σ2
ij , d = 2 or 3,
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Viscoelastics: β and β′

β(σ) =
σe−1

4η
Cc : σ

Cc =



 1 −1 0
−1 1 0
0 0 4

 , 2D,


4/3 −2/3 −2/3
−2/3 4/3 −2/3
2/3 −2/3 4/3

0

0
4

4
4


, 3D.

β′ =



σe−1

4η

 c1 −c1 c3
−c1 c1 −c3
c3 −c3 4c2

 , 2D,

σe−1

4η



4/3 + S2
x −2/3 + Sx Sy −2/3 + Sx Sz Sx T1 Sx T2 Sx T3

−2/3 + Sx Sy 4/3 + S2
y −2/3 + Sy Sz Sy T1 Sy T2 Sy T3

−2/3 + Sx Sz −2/3 + Sy Sz 4/3 + S2
z Sz T1 Sz T2 Sz T3

Sx T1 Sy T1 Sz T1 4 + T 2
1 T1T2 T1T3

Sx T2 Sy T2 Sz T2 T2T1 4 + T 2
2 T2T3

Sx T3 Sy T3 Sz T3 T3T1 T3T2 4 + T 2
3


, 3D.
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c1 =1 + (e − 1)((σxx − σyy )/(2σ))2

c2 =1 + (e − 1)(σxy/σ)2

c3 =(e − 1)(σxxσyy − σyyσxy )/σ2

Sx =c(2σxx − σyy − σzz)/(3σ)

Sy =c(2σyy − σzz − σxx )/(3σ)

Sz =c(2σzz − σxx − σyy )/(3σ)

T1 =2cσxy/σ,T2 = 2cσyz/σ,T3 = 2cσxz/σ

where c =
√

e − 1
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When e = 1, β′ = 1
4ηCc , the matrix Kn is then independent

of σij and n, as long as the step length ∆t is a constant. In
this case we only need to assemble the viscoelastic
stiffness matrix K once for the first step, and keep updating
the RHS Fn. When e > 1 however, both the stiffness
matrix and RHS need to be reassembled for every step.
Since the scale factor α and the effective viscosity η always
appear as α

4η , they are treated as one parameter.
Therefore, in addition to the elastic constants, two
parameters, e and η, need to be specified.
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Viscoelastic benchmark

Slip on a strike-slip fault: Elastic crust over viscoelastic mantle.
Only a part of model domain is shown.
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Comparison against Abaqus at t = 0 and t = 10 years. The
displacement is plotted along a trajectory perpendicular to the
fault plane through the viscoelastic layer.
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Explicit solver for the seismic radiation

Mü + Cu̇ + Ku = f,

where, M is mass matrix; C = αM + βK is damping matrix; α
and β are Rayleigh damping coefficients. Newmark explicit
scheme has,

un = M−1
(

(∆t2fn − Kun−1)−∆tC (un−1 − un−2)
)

+2un−1−un−2

The incremental form,

∆un =M−1
(

(∆t2∆fn − K∆un−1)

− ∆tC (∆un−1 −∆un−2)) + 2∆un−1 −∆un−2
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Absorbing boundary

[Lysmer and Kuhlemeyer, 1969] propose that the absorbing
boundary for the elastodynamic model can be achieved by
adding additional terms to the damping matrix as,

cii =

{
cii +

∫
Γ ρVpdΓ, p wave ‖ i th axis,

cii +
∫

Γ ρVsdΓ, p wave ⊥ i th axis,
for all i-axes.

Assuming small incident angles
(θ < 30◦), that the p-wave can
be considered roughly
perpendicular to the absorbing
boundary. Therefore, this
addition is irrespective to the
coming wave directions.
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TVP 5 wave forms

Waveform comparison for station 2.
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TVP 5 wave forms

Waveform comparison for station 3.
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TVP 5 wave forms

Waveform comparison for station 4.
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Performance

Subduction, ∼ 8 m
elements, implicitly
solved, under 120
secs.

Thrust fault, ∼ 6 m
elements, 2000
explicit steps,
under 60 secs.



Introduction Hybrid solver for periodical fault rupture Governing equations Hybrid model Summary Backups

Winkler Foundation

Winkler Foundation is to consider the gravity caused anisotropy
by adding linear springs in the gravity direction. The element
stiffness matrix is therefore modified by

k (p)
ii = k (p)

ii +
1
np

∫
Γg

ρgdΓg, for p ∈ Γg , i th axis ‖ ~g, Γg ⊥ ~g,

where, np is the number of Gauss points on the facet Γg.
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