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Abstract — Pore connectivity is likely one of the most important factors affecting the permeability of
reservoir rocks. Furthermore, connectivity effects are not restricted to materials approaching a
percolation transition but can continuously and gradually occur in rocks undergoing geological
processes such as mechanical and chemical diagenesis. In this study, we compiled sets of published
measurements of porosity, permeability and formation factor, performed in samples of
unconsolidated granular aggregates, in which connectivity does not change, and in two other
materials, sintered glass beads and Fontainebleau sandstone, in which connectivity does change. We
compared these data to the predictions of a Kozeny-Carman model of permeability, which does not
account for variations in connectivity, and to those of Bernabé et al. (2010, 2011) model, which does
[Bernabé Y., Li M., Maineult A. (2010) Permeability and pore connectivity: a new model based on
network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M., Maineult A.,
Tang Y.B. (2011) Pore connectivity, permeability and electrical formation factor: a new model and
comparison to experimental data, J. Geophys. Res. 116, B11204]. Both models agreed equally well
with experimental data obtained in unconsolidated granular media. But, in the other materials,
especially in the low porosity samples that had undergone the greatest amount of sintering or
diagenesis, only Bernabé et al. model matched the experimental data satisfactorily. In comparison,
predictions of the Kozeny-Carman model differed by orders of magnitude. The advantage of the
Bernabé et al. model was its ability to account for a continuous, gradual reduction in pore
connectivity during sintering or diagenesis. Although we can only speculate at this juncture about
the mechanisms responsible for the connectivity reduction, we propose two possible mechanisms,
likely to be active at different stages of sintering and diagenesis, and thus allowing the gradual
evolution observed experimentally.

Résumé—Connectivité de l’espace poreux et propriétés de transport des roches— La connectivité
porale est probablement l’un des plus importants facteurs affectant la perméabilité des roches réservoir.
En outre, les effets de connectivité ne sont pas limités aux seuls matériaux approchant un seuil de
percolation mais peuvent avoir lieu progressivement dans des roches soumises à des processus tels
que la diagénèse mécanique ou chimique. Dans cette étude, nous avons compilé plusieurs jeux,
préalablement publiés, de mesures de porosité, perméabilité et facteur de formation, obtenues sur des
agrégats granulaires non-consolidés, pour lesquels la connectivité ne change pas, ainsi que dans deux
autres matériaux, billes de verre frittées et grès de Fontainebleau, pour lesquels elle varie. Nous avons
comparé ces données aux prédictions d’un modèle de perméabilité de type Kozeny-Carman, qui ne
tient pas compte des variations de connectivité, et à celles du modèle de Bernabé et al. (2010, 2011),
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qui les inclue [Bernabé Y., Li M., Maineult A. (2010) Permeability and pore connectivity: a new model
based on network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M.,
Maineult A., Tang Y.B. (2011) Pore connectivity, permeability and electrical formation factor: a new
model and comparison to experimental data, J. Geophys. Res. 116, B11204]. Les deux modèles sont
apparus également en bon accord avec les données expérimentales pour les agrégats granulaires non-
consolidés. En revanche, pour les deux autres matériaux, en particulier dans les échantillons les moins
poreux, qui ont été le plus longtemps soumis au frittage ou à la diagénèse, les données expérimentales
n’ont pu être expliquées que par le seul modèle de Bernabé et al. En comparaison, les prédictions du
modèle de type Kozeny-Carman étaient erronées de plusieurs ordres de grandeur. La valeur du
modèle de Bernabé et al. réside dans sa capacité à reproduire la réduction continue et progressive de
la connectivité ayant lieu lors du frittage ou de la diagénèse. Bien que nous ne puissions, à ce stade,
que spéculer sur les mécanismes responsables de la réduction de connectivité, nous proposons deux
mécanismes possibles, susceptibles d’être actifs à des étapes différentes du frittage et de la diagénèse,
et donc de permettre l’évolution continue observée expérimentalement.

INTRODUCTION

Permeability is the most important rock property controlling
oil and gas production rates. There is great interest in the oil
and gas industry for devising reliable and accurate models of
permeability that could be applied to core, well-log and geo-
physical data. Dimensional analysis shows that permeability
is the product of a length scale squared by a dimensionless,
scale-invariant quantity (Berryman, 1992ab, 1993; Bernabé
et al., 2010), where “scale-invariant” refers to invariance
under application to the porous medium of a transform such
that the distance between any pair of points in the medium is
scaled by a constant factor. The choice of a length-scale
parameter is arbitrary (Bernabé et al., 2010). The only qual-
ities required of an effective length-scale parameter are that it
should be unambiguously defined, and that it should be mea-
surable in rock samples, preferably through a variety of inde-
pendent techniques. One suitable length-scale is the
hydraulic radius rH, here defined as twice the volume to sur-
face ratio of the pore space (rH = 2Vp/Ap, where Vp and Ap are
the pore volume and internal wetted surface area, respec-
tively). The hydraulic radius can be measured by several
methods, including picnometry, the BET gas-adsorption
technique, or microstructural image analysis. The form of
the scale-invariant term is more difficult to determine. Fluid
flow through porous media is affected to various degrees by
a vast number of scale-invariant factors (e.g., normalized
moments of the pore size and pore-length distributions, pore
aspect ratio, relative pore-wall roughness, pore connectivity,
and so forth). Therefore, identifying the major factors and
their functional form in a permeability model is a challeng-
ing task.

Our main goals here are to show that pore connectivity is
one of the most important scale-invariant factors and, fur-
thermore, that connectivity effects are not limited to media

going through a percolation transition but can gradually
occur in rocks undergoing common geological processes
such as mechanical and chemical diagenesis, micro-
fracturing during uplift, and so forth. These continuous
changes in connectivity can alter permeability in ways that
are not predicted using widely held models such as the
equivalent channel model of Paterson (1983) and Walsh
and Brace (1984) (PWB), which do not explicitly include
pore connectivity. Our approach will be to analyze experi-
mental datasets in porous materials subject to processes
expected to affect differently the length scale rH and the pore
connectivity. As a result, these materials display very differ-
ent interrelationships among porosity (/), permeability (k)
and formation factor (F), which can then be used to identify
and quantify the effect of the connectivity variations. In par-
ticular, we will show that the experimental data can be better
explained using the connectivity models such as Bernabé
et al. (2010, 2011).

The paper is organized as follows. In Section 1, we briefly
present the permeability and formation factor models used to
interpret the experimental data. The materials selected for
this study and the associated datasets are described in
Section 2. The data are analyzed in Section 3 using the mod-
els of Section 1. The results are discussed in Section 4 and
our conclusions presented at the end.

1 PERMEABILITY AND FORMATION FACTOR MODELS

The PWB model belongs to the Kozeny-Carman class of
models. According to PWB, the pore space can be repre-
sented by a single characteristic channel having the appropri-
ate dimensions, shape and orientation. When simple channel
shapes such as circular cylinders or flat slits are considered,
it is easy to derive the following equations:
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k ¼ D/r2H
s2

ð1Þ

F ¼ s2

/
ð2Þ

and

k ¼ Dr2H
F

ð3Þ

where D is a geometric form factor equal to 1/8 for a circular
cylinder and 1/12 for a flat slit, and s denotes the tortuosity,
i.e., the ratio of the channel length to the nominal length
of the corresponding porous medium. Inspection of
Equations (1-3) shows that the PWB model includes three
scale-invariant parameters, D, / and s, corresponding to
the shape, volume fraction and orientation of the pores. If
a strict geometrical definition is used for D and s, they
should both be expected to display a very limited range of
variation (i.e., between 1/8 to 1/12 for D and around square
root of 2 for s). These ranges have often been found inade-
quate, and tortuosity, in particular, is frequently assumed to
account implicitly for a host of effects not directly included
in PWB (Clennell, 1997, for a thorough review of tortuos-
ity). However, this practice transforms tortuosity into an
ill-defined parameter, which cannot be measured indepen-
dently. Equation (2) can be replaced or supplemented by
Archie’s law F = /�m (Revil and Cathles, 1999; Glover
et al., 2006), in which the cementation exponent m is inter-
preted as an indicator of the pore space “connectedness”
(Glover, 2009).

Bernabé et al. (2010, 2011) recently proposed an alterna-
tive model, in which connectivity is explicitly included. The
model assumes that pore-scale heterogeneity and connectiv-
ity are the major scale-invariant factors controlling k and F.
For the sake of simplicity, pore-scale heterogeneity is
restricted to cross-sectional pore size variability and is mea-
sured by the standard deviation (r) of the pore radius distri-
bution normalized to the mean radius. Additional
heterogeneity parameters may be needed for rocks with very
complex pore shapes (e.g., carbonates) and/or a bimodal
pore size distribution (e.g., presence of a micro-porous
phase). Bernabé et al. (2010, 2011) notion of connectivity
is similar to Glover’s “connectedness”, i.e., “general avail-
ability of pathways for transport” (Glover, 2009). According
to this definition, a natural measure of pore connectivity is
the mean coordination number (z), i.e., the average number
of channels connected to a nodal pore (Bernabé and
Maineult, 2015, for a discussion of z as pore connectivity
measure). Bernabé et al. model is summarized in
Equations (4-6):

k ¼ Ck r; eð Þ rH
l

� �2
z� zcð Þb rð Þr2H ð4Þ

1=F ¼ CF r; eð Þ rH
l

� �2
z� zcð Þc rð Þ ð5Þ

and

k ¼ C r; eð Þ rH
l

� �2 1�a rð Þð Þ
1=Fð Þa rð Þr2H ð6Þ

where the exponents (b, c, a = b/c) are functions of the pore-
scale heterogeneity measure r while the pre-factors (Ck, CF,
C = Ck CF

�a) depend on r and e, where e refers to the mean
aspect ratio of the approximately elliptical pore cross-
sections. Approximate functional forms for the pre-factors
and exponents were determined from the results of network
simulations (Bernabé et al., 2010, 2011). They are repeated
here for convenience in Table 1. The four scale-invariant
parameters used in the model, i.e., r, z, e and the normalized
pore length l/rH, can, in principle, all be measured in two-
and three-dimensional images of the pore space of rock
samples.

Before moving on to the rest of the study, we note that the
classic definition of the formation factor, i.e., the ratio of the
sample resistivity to that of the saturating brine is formally
incorrect because an electrical double layer usually forms
at the mineral/water interface, giving rise to anomalous sur-
face conduction that may significantly affect the rock con-
ductivity (Revil and Glover, 1997, 1998). Neglecting
surface conduction leads to an underestimation of the forma-
tion factor that is approximately:

F� � F 1� 2RS=rHrbrð Þ ð7Þ

where F* is the apparent formation factor, RS the specific
surface conductivity and rbr the brine conductivity. In
clay-free sandstones saturated with a high-salinity aqueous
solution the ratio RS/rH rbr is much smaller than 1 and sur-
face conduction can be neglected. This condition is assumed
to hold in the rest of the paper.

2 MATERIALS: TRANSPORT PROPERTIES AND
HYDRAULIC RADIUS

2.1 Unconsolidated Glass Beads and Sand

If properly prepared, random packs of monodisperse spher-
ical grains should have statistically equivalent structures
with identical scale-invariant parameters, independent of
the radius of the spheres. The PWB and Bernabé et al.
models both predict that, in such sphere packs, permeability

Y. Bernabé et al. / Pore Space Connectivity and the Transport Properties of Rocks 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106



scales as rH
2 while the formation factor remains constant.

The same should be approximately true of unconsolidated
packs of well-sorted, slightly non-spherical particles. To test
this we considered the experimental data collected on uncon-
solidated packs of monodisperse spherical glass beads
(Glover and Walker, 2009; Glover and Déry, 2010) and
well-sorted, rounded sands (Biella and Tabacco, 1981; Biella
et al., 1983). These datasets include values of porosity, grain
radius, permeability and formation factor (note that F was
measured in the high salinity limit, with negligible surface
conduction). As can be seen in Figure 1, the porosity /
and formation factor F of unconsolidated, well-sorted gran-
ular media are nearly constant, equal to 0.39 and 4.3, respec-
tively, while the permeability k varies over 6 orders of
magnitude from about 0.1 to 10 000.10�12 m2 (or Darcy).
These values of / and F correspond to a cementation expo-
nent of 1.5 in good accordance with theoretical predictions
(Glover et al., 2000). A minor trend is visible in the data with
high permeabilities corresponding to low porosities and high
formation factors, and vice versa (Fig. 1a, c). This effect is
more pronounced in sands than in glass beads and may
reflect the existence of a weak correlation of grain size to
grain asphericity (Bernabé et al., 2011) and/or packing struc-
ture. In the papers cited above, the experimental errors were
on the order of few percent, i.e., substantially lower than the
sample-to-sample fluctuations occurring during the prepara-
tion of the bead and sand packs. Sample-to-sample variabil-
ity was even more prevalent in sintered glass beads and
Fontainebleau sandstone as shown in Figure 1.

The hydraulic radius of a pack of perfectly monodisperse
spheres is given by:

rH ¼ 2/RG

3 1� /ð Þ ð8Þ

where RG denotes the sphere radius (see the derivation in
Appendix A). Note that Equation (8) considers a sphere pack
of infinite extent and does not include the end effect associ-
ated with the walls of the container that must always be used
in practice. Obviously, this end effect is negligible when the
grain size is significantly lower than the container size, a
condition that appears to be met in the studies mentioned

above, except possibly for the millimeter-size glass beads
of Glover and Walker (2009), who used relatively small con-
tainers (2.5 cm diameter). Based on the small experimental
errors reported for / and RG, the relative uncertainty
drH/rH was estimated to be lower than ±5% (Fig. 2).

In the case of sand packs, the sand grains are not spherical
and Equation (8) must be modified as:

rH ¼ 2/RG

3f G 1� /ð Þ ð9Þ

where the grain radius RG is now defined as the radius of the
sphere with an equal volume VG = 4pRG

3/3 and the aspheric-
ity factor fG > 1 is equal to the ratio of the grain surface area
AG to that of the equivalent sphere, fG = AG/4pRG

2. In order to
estimate fG, we applied two previously proposed formulas
linking fG and / for packs of ellipsoidal grains (Coelho
et al., 1997) and found fG values increasing from 1 for the
coarsest sands to about 1.3 for the finest ones (this increase
of ellipticity with decreasing grain size was also noted in
Bernabé et al., 2011). However, in addition to being slightly
elongated or flattened (roughly corresponding to prolate or
oblate ellipsoids), sand grains have irregular, uneven surfaces
that further increase AG and therefore fG. Since the Biella and
Tabacco (1981) and Biella et al. (1983) sands were described
as rounded, we only increased fG by a limited amount. Our
final fG estimates ranged from about 1.5 for the coarsest sands
to 1.9 for the finest ones. Owing to the relative imprecision of
fG, we evaluated drH/rH around ±10% (Fig. 2).

In log-log plots of permeability and formation factor
versus the estimated hydraulic radius (Fig. 2), we observe
power law dependences of k on rH with exponents equal
to 1.91 and 1.96 for glass beads and sand, respectively
(notice that the exponent increases to 1.98 when Glover
and Walker (2009) three coarsest glass bead packs are
omitted to avoid the end effect mentioned in the previous
paragraph). Conversely, F displays very weak variations
associated with a possible minor correlation of grain size
with grain shape and/or packing structure. In summary,
well-sorted, unconsolidated granular media represent
an excellent approximation of materials possessing a vari-
able length scale rH and constant scale-invariant factors

TABLE 1

Approximate expressions of the exponents and pre-factors of Equations (4-6) as functions of r and e (from Bernabé et al., 2011)

b = 1.2343 + 0.93462r + 1.4755r2 Ck ¼ wkðeÞ10�ð1:1950þ 0:82190rþ 2:0459r2Þ; wk eð Þ ¼ 3 1þ eð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e2 þ 10eþ 3

p� �2
8eð1þ e2Þ

c = 1.2903 + 0.045527r + 0.82390r2 CF ¼ wFðeÞ10�ð0:32894þ 0:23339rþ 1:1423r2Þ; wF eð Þ ¼ 3 1þ eð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e2 þ 10eþ 3

p� �2
4e

a ¼ b
c

C ¼ CkC
�a
F
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(with the possible exception of some minor factors that are
not investigated in the present study).

2.2 Sintered Glass Beads

Sintering of granular materials is a densification process dri-
ven by the excess free energy associated with the surface of
the grains. Sintering is activated by raising temperature to a
sufficiently high value. Sintered glass beads have often been
used as rock proxies to study the effect of porosity on the

physical properties of rocks. In particular, Wong et al.
(1984), Guyon et al. (1987), Li et al. (1995) and Blair
et al. (1996) reported measurements of k, F and / in sintered
monodisperse glass beads. They used three main types of
glass beads with radii of around 25, 50 and 100 lm (materi-
als with grain radii as low as 90 lm and as high as 160 lm
are included in the last group). Despite large fluctuations, the
three categories display very similar power-law trends of
permeability versus / and F (k a /4.3 and k a F�2.1;
Fig. 1a, c) and of the formation factor with respect to poros-
ity (F a /�2, i.e., the classic Archie’s relation; Fig. 1b).

Glass beads
104
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1

0.01

k 
 (

10
-1

2  
m

2 )

0.0001

104

1000

F 100

10
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0.01 0.1

Glass beads
Sand

1
1

0.01
a) b)

c)

104

100

1

-2.1

0.01

k 
 (

10
-1

2  
m

2 )

F

0.0001

0.1
φ φ

1

Sand
Sintered beads 25

4.3

Sintered beads 50
Sintered beads 100
Fontainebleau 1
Fontainebleau 2

1041 10 100 1000

Figure 1

Compilation of published experimental data, a) k versus /, b) F versus / and c) k versus F, in unconsolidated monodisperse glass beads (Glover
and Walker, 2009; Glover and Déry, 2010; black dots), well-sorted, rounded sands (Biella and Tabacco, 1981; Biella et al., 1983; blue dots),
sintered glass beads (Wong et al., 1984; Guyon et al., 1987; Li et al., 1995; Blair et al., 1996; purple, red and orange squares corresponding
to different grain sizes as indicated in the inset) and Fontainebleau sandstone (Doyen, 1988; Fredrich et al., 1993; Zamora, unpublished data;
black diamonds; Revil et al., 2014; grey diamonds). The colored lines are inserted to highlight power-law trends in the various materials (note
that the three families of sintered glass obey fairly similar power laws). The values of the exponents are given when necessary.
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During sintering solid matter is transferred over very short
distances and the total volume of solid does not change, even
though the density of the aggregate increases. Densification
of the granular assembly is caused entirely by redistribution
of the solid phase and decrease of the pore volume. This pro-
cess produces an augmentation of the number of grain con-
tacts per grain very similar to the one experimentally
observed in plastically compressed bronze powders
(Fischmeister et al., 1978). Using these properties of
sintering, we developed a method to estimate the hydraulic
radius of monodisperse sintered glass beads from porosity
measurements and the initial radius of the spheres
(Appendix A for more details). Here, we estimated the rela-
tive uncertainty drH/rH to be ±15% (Fig. 2).

We observe that permeability, formation factor and poros-
ity follow well-defined power laws of the hydraulic radius,
k a rH

3.7 (Fig. 2a), F a rH
�1.7 (Fig. 2b) and / a rH

0.9 (not
shown). The observed exponents are substantially different
from those predicted by the PWB and Bernabé et al. models
(Eq. 1-6) when the scale-invariant factors are assumed
constant. These differences imply that, during sintering,
variations in hydraulic radius were coupled with changes
in the major scale-invariant factors, in particular pore
connectivity.

2.3 Fontainebleau Sandstone

Fontainebleau sandstone is a 99% pure quartz arenite from
the Paris basin, France. It is relatively well sorted with a

mean grain radius of about 120 lm. One characteristic that
makes Fontainebleau sandstone an excellent material for
testing rock physics models, is that the formation includes
a very wide range of porosities (from as low as 0.03 to about
0.25). In a seminal study, Bourbié and Zinszner (1985) mea-
sured permeability, porosity and the acoustic properties of a
large set of Fontainebleau sandstone specimens. Moreover,
they performed a detailed microstructure investigation using
a variety of techniques, including the preparation of pore
casts. Similarly, Doyen (1988) and Fredrich et al. (1993)
combined quantitative microstructure observations and
laboratory measurements of k, F and /. They used two-
dimensional images of the pore structure to estimate the
hydraulic radius (Fredrich et al., 1993), the mean pore coor-
dination number z and the mean pore radius <r> (Doyen,
1988). The statistical distributions of porosity, pore coordi-
nation number z, throat radius r and pore length l were mea-
sured in three-dimensional images of several Fontainebleau
sandstone samples by Lindquist et al. (2000). Furthermore,
we complemented the datasets cited above with the labora-
tory measurements of /, k and F (including surface conduc-
tion correction) of Revil et al. (2014) and Zamora
(unpublished data).

As reported by Bourbié and Zinszner (1985), Fontaine-
bleau sandstone displays a very well defined relationship
between porosity and permeability (Fig. 1a). It is then
reasonable to assume that other transport properties and
microstructural quantities may also be accurately expressed
as functions of porosity, allowing the individually
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100
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Figure 2

Influence of the hydraulic radius on a) permeability and b) formation factor. The diagrams use the same symbol and line conventions as in
Figure 1. Three horizontal error bars (dark purple) help visualize the relative uncertainty drH/rH determined for the various materials
(i.e., ±10, ±15 and ±20% for the unconsolidated sands, sintered glass beads and Fontainebleau sandstone, respectively).
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incomplete datasets of Doyen (1988), Fredrich et al.
(1993), Revil et al. (2014) and Zamora (unpublished data)
to be blended together into a more complete one (for exam-
ple, see the approach used by Bernabé et al., 2010). How-
ever, visual inspection shows that the formation factor
values reported in Revil et al. (2014) are significantly
lower and more scattered than the other data sets (as is par-
ticularly evident for the samples with / < 0.12; Fig. 1b, c).
This discrepancy is probably not caused by surface con-
duction since the presumably uncorrected formation fac-
tors of Doyen (1988) and Fredrich et al. (1993) are
actually higher than the corrected ones, while the reverse
would be expected if surface conduction played a major
role. Moreover, note that Doyen (1988) and Fredrich
et al. (1993) used highly saline NaCl solutions, which
cause negligible surface conduction in clay-free rocks such
as Fontainebleau sandstone.

In order to acknowledge the differences in F, we divided
the data into two groups, Fontainebleau 1 containing Doyen
(1988), Fredrich et al. (1993) and Zamora (unpublished data)
data, and Fontainebleau 2 including only the Revil et al.
(2014) data. The two groups of (k, /) data points appear well
superposed on a log-log scatterplot (Fig. 1a) and display the
classic downward-curved trend originally reported by
Bourbié and Zinszner (1985). We also note that the Fontaine-
bleau sandstone data approximately coincide with those of
the coarsest sintered glass beads, as should be expected since
they nearly have the same grain size. The formation factor of
the Fontainebleau 1 group is consistent with the classic
Archie’s relation, F a /�2, while a smaller cementation expo-
nent of about 1.8 is observed for the Fontainebleau 2 group
(Fig. 1b). The difference between the Fontainebleau 1 and
2 groups is also visible in Figure 1c, where permeability is
represented as a function of formation factor.

Bernabé et al. (2010) constructed a functional transform
to calculate rH as a function of / in Fontainebleau sandstone
based on Fredrich et al. (1993) results. This transform was
established using only 4 data points and, therefore, may have
limited applicability. Here, we tried to construct a more
robust rH(/) transform (Tab. 2) by assuming that the average
pore and/or throat radius values reported by Doyen (1988)

and Lindquist et al. (2000) could be used as hydraulic radius
proxies. Notice that the relative difference of the two trans-
forms is modest, between 2 and 8%, and that the new one has
a slightly greater range of variation, corresponding to a rel-
ative uncertainty drH/rH of about ±20%.

We observe that permeability declines much more rapidly
with decreasing rH in Fontainebleau sandstone than in the
sintered glass beads (Fig. 2a) whereas the formation factor
increases more sharply (Fig. 2b, in which the difference
between Fontainebleau 1 and Fontainebleau 2 is visible).
The implication is that the evolution of the pore structure
during diagenesis of Fontainebleau sandstone (mostly quartz
cementation) differs from that during sintering.

3 DATA ANALYSIS AND MODELING

The procedure for testing the PWB model is as follows.
According to a strict geometrical interpretation of PWB,
we assign fixed constant values to the input parameters,
D = 0.1 and s2 = 2. We then calculate the PWB predictions
of k and F using Equations (1-3) and compare the results to
the experimental data. The model is deemed acceptable if the
calculated k and F values fall within some intervals ±dk and
±dF, respectively, of the corresponding experimental values.
Since D and s2 are not allowed to vary, the model tolerances
are given by dk/k � 2 drH/rH + d/// and dF/F � d///,
where the d/// term is small compared to drH/rH.

We specifically chose this procedure to test whether or not
a model exclusively sensitive to variations in the character-
istic length scale rH could explain the experimental data. If
a different goal were pursued, flexibility could be increased
by separately considering the hydraulic and electrical tortu-
osities, sh

2 = D/rH
2/k and se

2 = /F. In this second approach,
the effect of scale-invariant factors such as pore connectivity,
are implicitly incorporated into sh

2 and se
2. Note that, in order

to be consistent with Equations (1) and (2), Equation (3)
requires formal equality of sh

2 and se
2 but it does not exclude

large variations of tortuosity as a function of /.
Similarly, in order to test the Bernabé et al. (2011)

model, we need to assign input values to the mean pore coor-
dination number, z, the normalized pore length, l/rH, the het-
erogeneity measure, r, and the cross-sectional aspect ratio, e.
For this purpose, we prefer to use actual measurements if
they exist (a rare case). When direct experimental data are
not available, the best option is to infer the values of the
desired parameters from measurements of other related
quantities. The inference scheme may be based on a theoret-
ical model (e.g., the estimation of rH for unconsolidated
glass beads using Eq. 8) or on a purely empirical relationship
(e.g., the rH(/) transform established for Fontainebleau
sandstone). When even indirect information is unavailable,
the last option is to identify plausible, reasonably narrow

TABLE 2

The transforms used to complete the Fontainebleau sandstone datasets of
Doyen (1988), Fredrich et al. (1993), Revil et al. (2014) and Zamora

(unpublished data)

l = 73.284/�0.39752

Lindquist et al. (2000)

rH = 9.528 + 94.705/ – 104.94/2

Doyen (1988), Fredrich et al. (1993) and Lindquist et al. (2000)

z = 10.366 + 6.2455log10/
Doyen (1988)
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ranges of variation of the input parameters and test the mod-
els using values falling within these ranges.

Examination of the functions Ck(r, e), CF(r, e), b(r) and
c(r) in Equations (4) and (5) shows that the Bernabé et al.
(2011) model is more sensitive to r and z than l/rH and e.
Furthermore, the sensitivity of the model strongly depends
on the magnitude of r and z. For example, imposing a
change dz = ±0.1 (or, equivalently, dr = ±0.05) results in a
relative variation of calculated k as low as ±1% for
r = 0.05 and z = 10 and as high as ±60% for r = 0.95 and
z = 2 (moderately smaller relative variations are obtained
for F in the same conditions).

3.1 Unconsolidated Glass Beads and Sands

It is rather obvious that unconsolidated monodisperse bead
packs and well-sorted sands have a well-connected pore
space, for which the appropriate value of z is on the order
of 6, and a relatively homogeneous pore structure with r
between 0.3 and 0.5 (Bernabé et al., 2011, and references
therein). It is also clear that the cross-section of the pores,
although not circular, are not elongated in a particular direc-
tion; thus, e should be taken to be unity (Bernabé et al.,
2011). Finally, the average pore length, l, must be related to
the grain radius. Bernabé et al. (2011) estimated l � 1.2 RG

for a Face Centered Cubic (FCC) array of identical spheres,
but random sphere packs are less dense than FCC and a
slightly greater value may therefore be more realistic (here,
we used l = 1.3 RG). In sand packs, the situation is different.
We must account for a relatively broad grain size distribution
and recognize that, in the average, the pore length should be
more strongly controlled by the fine particles than be the
coarse ones (see the analysis of binary sand mixtures in
Bernabé et al., 2011). Well-sorted sands have grain radius dis-
tributions with a standard deviation lower than about 1/3 of
the mean grain radius and hence contain a significant fraction
of grains with a radius as low as half of the mean grain radius.
Thus, values of l as low as 0.65 RG can reasonably be assumed

(here, we used l = 0.85 RG). For convenience, the assigned
values of the input parameters are summarized in Table 3.

Owing to moderately low drH/rH, high z and low r,
the dk/k and dF/F tolerances for both models were found to
be relatively small, i.e., dk/k < ±30% and dF/F < ±10%.
Despite these relatively tight tolerances, both the PWB and
Bernabé et al. models fitted the experimental k and F data
quite well for both glass bead packs and sands (Fig. 3). We
note, however, a slight tendency of the models (especially,
when expressed in Eq. 3 and 6) to overestimate the permeabil-
ity of the glass-bead packs (Fig. 3a, c). It is also worth empha-
sizing that a strictly geometrical definition of tortuosity (i.e.,
s2 = 2) is sufficient to ensure a good fit of the PWB model.

3.2 Sintered Glass Beads

Clearly, sintering is bound to produce significant structural
changes in the glass bead packs. We expect pore connectiv-
ity to decrease and pore-scale heterogeneity to increase dur-
ing sintering. Also the reduction of the intergranular
distances should lead to a simultaneous decrease of the pore
length. One of our main assumptions in this paper is that
structural changes accompanying processes such as sintering
or diagenesis, should be gradual and that the model param-
eters should be expressible as simple, continuous functions
of porosity. Here, for the sake of simplicity, we limited our
analysis of z, r and l to linear functions of /. At very low
levels of sintering (i.e., high porosity, / = 0.4), z, r and l
should evidently take the values mentioned in Section 3.1
for unconsolidated glass bead packs (i.e., z = 6, r = 0.45
and l = 1.3 RG). To determine the linear functions z(/),
r(/) and l(/) we only need to find the adequate values at
the low porosity end-member. Having no microstructure
information on the sintered glass beads at low porosities,
we proceeded by trial and error and found that z = 4,
r = 0.7 and l = 0.4 RG at / = 0.02, yielded satisfactory
results. The assigned values of the input parameters are sum-
marized in Table 3.

TABLE 3

Summary of the values assigned to the input parameters of the Bernabé et al. models

z r l/RG e

Unconsolidated glass
beads 6 0.45 1.3 1

Unconsolidated sands 6 0.45 0.85 1

Sintered glass beads
Linear

6 (/ = 0.4)
4 (/ = 0.02)

Linear
0.45 (/ = 0.4)
0.7 (/ = 0.02)

Linear
1.3 (/ = 0.4)
0.4 (/ = 0.02)

1

Fontainebleau sandstone
Logarithmic
6 (/ = 0.2)

1.6 (/ = 0.04)
0.75

Power law
1.2 (/ = 0.2)
2.2 (/ = 0.04)

Linear
0.3 (/ = 0.2)
0.03 (/ = 0.04)
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The main result is that, in sintered glass beads, the
Bernabé et al. Equations (4, 5) worked significantly better
than the PWB Equations (1, 2) (Fig. 4a, b). As expected from
the results described in Section 3.1, the two models gave
almost identical, well-matching results at porosities near
0.4 but PWB produced increasingly strong overestimation
of k and underestimation of F with decreasing porosity.
The dk/k and dF/F tolerances calculated for the PWB model
were clearly too small to explain the observed discrepancies
of up to one order of magnitude at very low /. However, the
tolerances for both models were nearly sufficient to account
for the experimental sample-to-sample variability. Surpris-
ingly, we found identically good fits with both the PWB

Equation (3) and Bernabé et al. Equation (6) (Fig. 4c).
The success of Equation (3) is remarkable since this equation
was derived from Equations (1, 2), which both appear to be
invalid in sintered glass beads. This outcome gives support
to the classic idea of using electrical conductivity measure-
ments to estimate the “connectedness” of the pore space
and incorporate it into a permeability model (Revil and
Cathles, 1999; Glover et al., 2006; Glover, 2009).

3.3 Fontainebleau Sandstone

Based on the reported microstructural data (Doyen, 1988;
Fredrich et al., 1993; Lindquist et al., 2000), Bernabé
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Figure 3

Comparison of calculated a) k from Equations (1, 4), b) F from Equations (2, 5) and c) k from Equations (3, 6) to the observed values of per-
meability and formation factor in the unconsolidated glass beads and sands. The meaning of the different symbols is explained in the inset, where
k(z) refers to Bernabé et al. Equation (4), F(z) to Equation (5) and k(F) to Equation (6). The vertical error bars (dark purple) represent the tol-
erances estimated for the Bernabé et al. model, dk/k � ±30% and dF/F � ±10%.
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et al. (2010, 2011) obtained approximate expressions of the
pore length l and pore coordination number z as functions of
porosity (Tab. 2). These transforms describe a large reduc-
tion of z from about 6 to 1.6 (very near the percolation
threshold) and a substantial increase of l/RG from 1.2 to
2.2, over a wide range of porosities (i.e., from 0.2 to 0.04).
Bernabé et al. (2010, 2011) argued that pore space images
(Bourbié and Zinszner, 1985; Doyen, 1988) suggest that
the pores in Fontainebleau sandstone tend to have elongated
cross-sections and that the cross-sectional aspect ratio e
decreases with decreasing porosity. The fact that the highest
porosities reported in Doyen (1988), Fredrich et al. (1993),

Revil et al. (2014) and Zamora (unpublished data) were
much lower than 0.4, the porosity of unconsolidated sands,
suggests that the corresponding rock samples had already
experienced a significant amount of diagenesis and were
therefore likely to have pore aspect ratios lower than unity.
For the sake of simplicity, we assumed that e was a linear
function of /, decreasing from 0.31 to 0.03 in the porosity
range mentioned above. The pore cross-section area and
pore length data reported by Lindquist et al. (2000) approx-
imately satisfied highly skewed exponential distributions,
which have equal standard deviations and means, suggesting
that the heterogeneity measure r should also be relatively
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Comparison of calculated a) k from Equations (1, 4), b) F from Equations (2, 5) and c) k from Equations (3, 6) to the observed values of per-
meability and formation factor in the sintered glass beads. The meaning of the different symbols is explained in the inset, where k(z) refers to
Bernabé et al. Equation (4), F(z) to Equation (5) and k(F) to Equation (6). The vertical error bars (dark purple) represent minimal estimates
of the model tolerances (i.e., dk/k � ±30% and dF/F � ±10% for the PWB model as well as the Bernabé et al. model applied to high porosity
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high. By trial and error, we found that a constant value
r = 0.75 gave satisfactory results. The assigned values of
the input parameters are summarized in Table 3.

The results obtained for the Fontainebleau sandstone
datasets are quite similar to those for the sintered glass
beads. The PWB Equations (1-3) yielded adequate results
only for the samples with highest porosities but overesti-
mated k by up to three orders of magnitude and underesti-
mated F by one and half at the lowest porosities (Fig. 5).
The observed discrepancies were much greater than the
dk/k and dF/F tolerances calculated for the PWB model.

In contrast, Bernabé et al. Equation (4) produced a very
good fit with data for both Fontainebleau 1 and Fontaine-
bleau 2 (Fig. 5a). Equation (5) was also satisfactory,
although the estimated dF/F tolerance could not offset the
large overestimation of F observed for the low porosity sam-
ples of the Fontainebleau 2 datasets (Fig. 5b). Equation (6),
while still relatively acceptable, displayed a visibly poorer fit
quality than Equation (4), particularly for the Fontainebleau
2 dataset (Fig. 5c). The data scatter associated with both the
PWB Equation (3) and Bernabé et al. Equation (6) was
much larger in Fontainebleau sandstone (even if we only
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Comparison of calculated a) k from Equations (1, 4), b) F from Equations (2, 5) and c) k from Equations (3, 6) to the observed values of per-
meability and formation factor in the Fontainebleau sandstone. The meaning of the different symbols is explained in the inset, where k(z) refers to
Bernabé et al. Equation (4), F(z) to Equation (5) and k(F) to Equation (6) and where the digits 1 and 2 indicate the Fontainebleau 1 and 2 datasets.
The difference between the two datasets is particularly visible in the diagrams b) and c). The vertical error bars (dark purple) represent minimal
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consider the Fontainebleau 1 dataset) than in the sintered
glass beads (compare Fig. 4c and 5c), suggesting that addi-
tional, relatively important scale-invariant factors were prob-
ably omitted in the models.

4 DISCUSSION

The main observation reported here is that the PWB model
correctly predicts the transport properties of unconsolidated,
well-sorted granular media (Fig. 3) but becomes gradually
more inexact when pore connectivity is altered by processes
such as sintering or cementation-controlled diagenesis
(Fig. 4, 5). Our task in this discussion is to identify the origin
of the PWB breakdown.

The granular materials investigated by Biella and Tabacco
(1981), Biella et al. (1983), Glover and Walker (2009) and
Glover and Déry (2010) cover nearly three orders of magni-
tude in grain size and nevertheless display very narrow
ranges of porosity (0.37 to 0.41, except a couple of outliers
as high as 0.45) and formation factor (4 to 5). This insensi-
tivity to grain size demonstrates that these materials have
essentially identical pore structures, characterized by nearly
constant scale-invariant factors. Their permeability, there-
fore, must almost exclusively depend on rH, the length scale

considered here. As discussed in Section 2.1, Equation (8)
allows an accurate estimation of rH for glass bead packs.
For the sands, Equation (9) is satisfactory, although the
asphericity factor fG is somewhat uncertain. Moreover, good
fits were generally obtained with both the PWB and Bernabé
et al. models using realistic values of the input parameters.
Accordingly, we can conclude that these data supports both
the PWB and Bernabé et al. models with constant scale-
invariant parameters, summarized in the following power
laws, k a rH

2 and F a rH
0.

In sintered glass beads and Fontainebleau sandstone, on
the other hand, the predictions of Equations (1, 2) (denoted
kPWB and FPWB, respectively) become strongly erroneous
(Fig. 4, 5). As mentioned earlier, another way to look at
Equations (1, 2) is to calculate the hydraulic and electrical
tortuosities sh

2 and se
2. Both parameters are found to

increase with decreasing porosity (Fig. 6). One interesting
observation is that sh

2 and se
2 have comparable values in sin-

tered glass beads (consistent with the validity of Eq. 3 dem-
onstrated by Fig. 4c), whereas sh

2 increases much faster than

a) b)

Figure 7

a) Schematic representation of the node splitting mechanism.
The cartoon is two-dimensional but it is meant to illustrate a
three-dimensional arrangement of sintered grains and pores
between them. The large blue dots indicate the center of the
nodes and the blue arrows symbolize the (out of plane) chan-
nels emanating from them. The large red arrow indicates the
evolution associated with sintering. b) Example of graph trans-
formations that leave the graph topological invariant (genus)
unchanged while reducing the mean coordination number. In
this cartoon, extra node/branch combinations (represented in
red) are inserted at different places in the graph without altering
the genus. By definition, nodes must always be present at the
extremities of a branch (the dotted segments are intended to
symbolize the unspecified continuation of the graph).

104

1000

100

0.01 0.1
φ

τ2 ≈ 2

τ h2 
 o

r  
τ e2

1

10

1

0.1

E Fontainebleau 1
H Fontainebleau 1
E Sintered glass beads
H Sintered glass beads

Figure 6

The hydraulic and electrical tortuosities sh
2 and se

2 versus
porosity for the sintered glass beads and Fontainebleau sand-
stone. The meaning of the different symbols is explained in
the inset, where H and E stand for hydraulic and electrical.
For the sake of visibility, the Fontainebleau 2 dataset is not
included in this diagram but the associated trends are compara-
ble to the Fontainebleau 1 trends represented here.
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se
2 in Fontainebleau sandstone (Fig. 5c). Furthermore, the

rate of increase of se
2 is about the same for both materials

(Fig. 6). As a quantitative summary, we note that, at poros-
ities of about 0.02 to 0.04, the ratio kPWB/k reached values as
low as 1/10 and 1/1 000 in sintered glass beads and Fontaine-
bleau sandstone, respectively, while FPWB/F approached 15
in both materials. What causes these discrepancies? PWB
has three easily identified unrealistic assumptions, (a) the
pores have idealized shapes, namely, straight cylinders or flat
slits, (b) the pore space is fully connected and pore connec-
tivity cannot change, (c) fluctuations in pore size, length and
other geometric characteristics are negligible.

We will first discuss hypothesis (a). The very small range
of variation of the form factor D mentioned in Section 1
suggests that the cross-sectional shape of the pores does
not have a substantial effect on fluid flow (indeed, square
and equilateral triangular conduits have form factors of 1/9
and 1/9.6, respectively). Although complex cross-sectional
shapes such as stars with narrow spokes may produce a
greater effect (Yale, 1984), unrealistic cross-sectional pore
shapes can be ruled out as the main cause of the breakdown
of PWB in sintered glass beads and Fontainebleau sandstone.

Alternatively, we note that channels in porous rocks have
constricted shapes with smaller cross-sections (usually
known as throats) in their middle parts than at the ends.
A gradual narrowing of the constrictions during sintering
and diagenesis will increasingly impede fluid flow and
may explain the breakdown of PWB. In order to estimate
this effect, we calculated the hydraulic and electrical conduc-
tances of a frustum-shaped pipe (i.e., truncated cone) and
compared them to those of an equivalent straight cylindrical
pipe (Appendix B).

In order to achieve identical values of porosity and
hydraulic radius, the frustum and cylindrical pipes must have
identical volumes and wetted surface areas, yielding the fol-
lowing equations:

3lr2H ¼ lc r22 þ r1r2 þ r21
� �

and

2lrH ¼ r1 þ r2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r1ð Þ2 þ l2c

q ð10Þ

where r1, r2 > r1 and lc denote the end-face radii and length
of the frustum pipe, and, rH and l refer to the estimated pore
radius and pore length discussed in Sections 2 and 3.
Although intuitively appealing, assuming lc = l is not practi-
cal since the system of Equations (10) does not necessarily
admit positive, real solutions for r1 and r2 besides the obvi-
ous but irrelevant r1 = r2 = rH. Alternatively, we can comple-
ment the system with either Equations (B5) or (B7) of
Appendix B, in which gH is assumed equal to the ratio
k/kPWB and gE to FPWB/F. We then solve both expanded sys-
tems for r1, r2 and lc, and check whether or not the two sets
of solutions are consistent with each other.

For the sintered glass beads, the lowest porosity
(/ � 0.02) occurred in the coarsest group (RG = 100 lm),
corresponding to rH � 1.7 lm, l � 39 lm, gH � 1/10 and
gE � 1/15. The system with Equation (B5) and that with
(B7) produced significantly different values for the constric-
tion radius, i.e., r1 � 0.6 lm and 0.1 lm, respectively,
although the single values r2 � 2.5 lm and lc � 45 lm were
obtained in both cases. The failure to find consistent solu-
tions for r1 is due to the fact that gH and gE have comparable
magnitudes although a given constriction has a greater effect
on fluid flow than electrical conduction. Thus, tightening of
pore constrictions is not a plausible cause of the breakdown
of PWB in sintered glass beads.

For the Fontainebleau sandstone, at low porosities
(/ � 0.04) we have rH � 14 lm, l � 250 lm, gH � 1/1 000
and gE � 1/15, which yield consistent solutions, i.e.,
r1 � 0.9 lm, r2 � 21 lm and lc � 320 lm, for the two sys-
tems. Nevertheless, pore constrictions can be ruled out as
major PWB breakdown factors in Fontainebleau sandstone
also because r1 � 0.9 lm is much smaller than Lindquist
et al. (2000) reported mean throat radii (from 23 lm at a
porosity of 0.22 to 18 lm at 0.075). Notice that, given
the very strong throat size heterogeneity observed in
Fontainebleau sandstone, we cannot conclude that very
narrow constrictions do not exist in this rock and that throat
tightening does not happen at all. Our conclusion is merely
that throat tightening cannot alone explain the breakdown
of the PWB model.

We are left with hypotheses (b) and (c), which are addressed
in Bernabé et al. (2010, 2011). We saw in Sections 3.2 and 3.3
that sets of reasonable values of z, l/rH, r and e producing good
fits with the experimental data, can be found for both the sin-
tered glass beads and Fontainebleau sandstone. These results
suggest that sintering and cementation-controlled diagenesis
of unconsolidated granular media lead to reduced pore connec-
tivity and increased pore scale heterogeneity. In Fontainebleau
sandstone, diagenesis is also associated with flattening of the
pores.

One important question is: how does reduction of connec-
tivity occur? As proposed by Zhu et al. (1995, 1999), one
possible mechanism is pinching off of conduits, which trans-
forms connecting conduits into pairs of dead-ends and
strings of isolated pores. The specific pinching off mecha-
nism invoked by Zhu et al. (1999) is tube ovulation, a sur-
face tension-controlled process that occurs increasingly
rapidly with decreasing tube radius. Pinching off should,
therefore, be primarily active during the late stages of sinter-
ing and diagenesis when appropriately narrow throats are
present.

We can also expect re-arrangement of grains to take place
during the early stages of sintering and diagenesis, owing to
the sufficiently large pore space available for grain motion
and to the presence of intergranular mechanical forces
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(gravity and surface tension in the case of sintering and over-
burden pressure for diagenesis). Such a grain re-arrangement
event is schematically illustrated in Figure 7a. The large
nodal pore in the upper cartoon is split into two intercon-
nected smaller cavities, each one acting as a new nodal pore
and connected to a lower number of conduits than the origi-
nal one. Hence, splitting of nodal pores is associated with a
decrease of the pore coordination number and, therefore, of
connectivity (Glover and Walker, 2009, also attributed
connectivity loss to grain re-arrangements). Notice that, in
the schematic example of Figure 7a, the coordination num-
ber reduction is not associated with a change in topology.
In graph theory, the appropriate topological invariant is the
first Betti number (or genus), f = Nb – Nn + Nc, where Nb

denotes the number of branches, Nn the number of nodes
and Nc the number of separate connected clusters (in
Fig. 7a, Nc = 1). Indeed, f is left unchanged by the grain
re-arrangement event represented in Figure 7a whereas the
mean coordination number z decreases (see also the example
of Fig. 7b, where branch-node pairs are added at diverse
locations without changing f).

As argued by Bernabé and Maineult (2015), pore connec-
tivity is not a pure topological property. In network simula-
tions, the dissipation of energy associated with fluid flow
occurs in the branches while the nodes are just locations
were mass conservation is enforced. If the resistance of a
particular branch is negligibly small, this branch can be
removed and the two nodes connected to it merged together
without any change in the numerical results (Bernabé and
Maineult, 2015). Numerical merging of nodes was indeed
found to be necessary in three-dimensional microstructure
studies using skeletonization algorithms, which tend to
define nodes only at triple junctions (z = 3) and blind ends
(z = 1). These algorithms thus identify many hydraulically
irrelevant branches and require implementation of corrective
steps to eliminate them. For example, Lindquist et al. (2000)
devised a rule to merge nodes connected by branches shorter
than some threshold value. Similarly, Petford et al. (2001)
measured z by considering only the branches possessing a
significant constriction (in other words, by counting the
throats) and by merging the redundant nodes. The Bernabé
et al. (2010, 2011) model, of course, assumes hydraulically
representative values of z (for example, they found that the
z(/) transform based on Doyen’s, 1988, data gave better
results that the one from Lindquist et al., 2000).

In summary, the processes referred to above as pinching
off and node splitting could explain the regular reduction
in pore connectivity inferred from the sintered glass beads
and Fontainebleau sandstone experimental data. Although
they both reduce the mean pore coordination number, these
two processes affect the pore space topology differently.
Pinching off of a conduit adds two nodes and a branch and
hence decreases f by one. In the example of Figure 7a, node

splitting leaves f constant, but, if a node splits into more than
two connected nodes and if the new nodes form a loop, the
genus f will increase. Therefore, determining the genus of
the skeletonized pore space of rock samples may provide
useful insight into the rock genetic processes, although we
do not expect f (unlike the coordination number z) to be for-
mally related to the rock transport properties.

CONCLUSIONS

Our main conclusions are:
– one of the most important scale-invariant factors control-

ling permeability is pore connectivity;
– a recent permeability model that explicitly includes the

effect of connectivity and takes connectivity variations
into account, performs much better than an older, widely
used one that does not;.

– the application of the Bernabé et al. model indicates that
pore connectivity was continuously and gradually
reduced during sintering and cementation-controlled
diagenesis;

– examination of the sintered glass beads and Fontainebleau
sandstone experimental data also suggests that pore-
plugging processes (e.g., pinching off) should be active
only during the late stages of sintering and diagenesis,
and should be complemented by other processes during
the early stages. For example, grain re-arrangements
occurring in highly porous samples may have lead to
the division of large nodal pores into smaller, less con-
nected ones, thus causing the pore coordination number
to decrease.
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APPENDIX
Appendix A: Hydraulic Radius

Unconsolidated packing of monodisperse spheres: We consider a volume V0 containing n spheres. The porosity and hydraulic
radius are given by:

/ ¼ V 0 � n
4pR3

G
3

V 0
ðA1Þ

and

rH ¼ 2
V 0 � n

4pR3
G

3

n4pR2
G

ðA2Þ

We can calculate V0 from Equation (A1) and plug it into (A2). Since V0 is proportional to the number of spheres, n cancels out
and Equation (7) is obtained. The same derivation applies to sand grains, except that the surface of the grains must be written n fG
4p RG

2, where fG is the asphericity factor.
Sintered glass beads: After sintering the glass beads volume V0 is reduced to Vsnt. Since the volume of solid does not

change during sintering, the porosity of the sintered glass beads can be written as:

/ ¼ Vsnt � n
4pR3

G
3

Vsnt
ðA3Þ

Similarly, the hydraulic radius is given by:

rH ¼ 2
n
4pR3

G
3

/
1�/

nAG
ðA4Þ

where AG is the average surface area of a single sintered sphere. A sintered sphere can approximately be represented as a trun-
cated sphere with z spherical caps removed (Roberts and Schwartz, 1985; Schwartz and Kimminau, 1987), where z is the
average number of grain contacts per sphere, which can be estimated as z = 6 /�1/5 based on the experimental data of
Fischmeister et al. (1978) on plastically compressed packings of monodisperse bronze spheres. Because the grain contacts
are not all formed at the same time during sintering, we must evaluate the number dz of new grain contacts forming when
the porosity decreases from /* to /*� d/* (where * denotes a running porosity variable, between the initial and final values,
/0 and / < /0, respectively) and the depth h* reached by the corresponding spherical caps at the end of the sintering process,
i.e., when /* approaches /. By differentiation we obtain:

dz ¼ 6

5
/�ð Þ�6

5d/� ðA5Þ

The linear dimension of the volume of the sintered spheres must be proportional to the distance between contacting spheres, implying:

V

V �

	 
1
3

¼ 1� /�

1� /

	 
1
3

¼ RG � h�

RG
ðA6Þ

where only the new grain contacts formed at /* are considered. Remembering that the surface of a spherical cap of depth h* is
2pRG h*, we obtain AG equal to:

AG ¼ 4pR2
G �

Z /0

/</0

12pR2
G

5
1� 1� /�

1� /

	 
1
3

 !
/�ð Þ�6

5d/� ðA7Þ
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Appendix B: Hydraulic and Electrical Conductance of Constricted Pipes

We consider a frustum-shaped pipe of length lc. We call r1 and r2 > r1 the radii of the narrow and wide bases, respectively, and
x the coordinate along the pipe axis. We assume that fluid flow through this pipe is laminar and obeys Reynold’s equations,
i.e., the locally expressed Poiseuille law is valid for any value of x, a condition most likely met in long pipes. The flow rate q is
constant along the pipe and given by:

q ¼ p dp
dx xð Þr xð Þ4

8g
ðB1Þ

where p(x) is the fluid pressure at x, r(x) = r1 + x(r2�r1)/lc the cross-sectional radius and g the fluid viscosity. We can thus
write:

d

dx
r4
dp

dx

	 

¼ 0 ðB2Þ

After double integration of Equation (B2), we find:

q ¼ 3p �pj jr31r32
8glc r21 þ r1r2 þ r22

� � ðB3Þ

where |Dp| is the absolute value of the apparent pressure difference between the pipe faces. A similar expression can be written
for a straight, cylindrical pipe of radius r = rH and length l:

q ¼ p �pj jr4H
8gl

ðB4Þ

Thus, the ratio gH of the frustum pipe hydraulic conductance to that of a cylindrical pipe is:

gH ¼ 3lr31r
3
2

lc r21 þ r1r2 þ r22
� �

r4H
ðB5Þ

The electrical resistance Rc of a frustum pipe saturated with a solution of resistivity qs is:

Rc ¼
Z lc

0

qsdx

pr xð Þ2 ¼
lcqs
pr1r2

ðB6Þ

Likewise, the resistance of a cylindrical pipe is equal to lqs/(prH
2) and the ratio gE of the electrical conductances is:

gE ¼ lr1r2
lcr2H

ðB7Þ
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