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3

Neural Networks and related Deep Learning methods are currently at the4

leading edge of technologies used for classifying objects. However, they gen-5

erally demand large amounts of time and data for model training; and their6

learned models can sometimes be difficult to interpret. In this paper, we ad-7

vance FastMapSVM—an interpretable Machine Learning framework for clas-8

sifying complex objects—as an advantageous alternative to Neural Networks9

for general classification tasks. FastMapSVM combines the complementary10

strengths of FastMap and Support-Vector Machines. FastMap is an efficient11

linear-time algorithm that maps complex objects to points in a Euclidean space,12

while preserving pairwise non-Euclidean distances between them. We demon-13

strate the efficiency and effectiveness of FastMapSVM in the context of clas-14
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sifying seismograms. We show that its performance, in terms of precision,15

recall, and accuracy, is comparable to that of other state-of-the-art methods.16

However, compared to other methods, FastMapSVM uses significantly smaller17

amounts of time and data for model training. It also provides a perspicuous18

visualization of the objects and the classification boundaries between them.19

We expect FastMapSVM to be viable for classification tasks in many other20

real-world domains.21

Introduction22

Various Machine Learning (ML) and Deep Learning (DL) methods, such as Neural Networks23

(NNs), are popularly used for classifying objects. For example, a Convolutional NN (CNN) is24

used for classifying Sunyaev-Zel’dovich galaxy clusters [1], a densely connected CNN is used25

for classifying images [2], and a deep NN is used for differentiating the chest X-rays of Covid-26

19 patients from other cases [3]. However, they generally demand large amounts of time and27

data for model training; and their learned models can sometimes be difficult to interpret.28

In this paper, we advance FastMapSVM [4]—an interpretable ML framework for classi-29

fying complex objects—as an advantageous alternative to NNs for general classification tasks.30

Whereas most ML algorithms learn diagnostic features of individual objects in a class, FastMapSVM31

leverages a domain-specific distance function on pairs of objects. It does this by combining the32

strengths of FastMap and Support-Vector Machines (SVMs). In its first stage, FastMapSVM33

invokes FastMap, an efficient linear-time algorithm that maps complex objects to points in a34

Euclidean space, while preserving pairwise distances between them. In its second stage, it in-35

vokes SVMs and kernel methods for learning to classify the points in this Euclidean space. The36

FastMapSVM framework that we implement in this paper is virtually identical in concept to the37

SupFM-SVM method of Ban et al. [4]; however, our development is novel in that it manifests38

2



several of the advantages that FastMapSVM offers over other methods that Ban et al. [4] only39

alluded to or altogether overlooked.40

First, there are many real-world domains in which feature selection for individual objects41

is challenging, but a distance function on pairs of objects is well defined and easy to compute.42

In such domains, FastMapSVM is more easily applicable than other ML algorithms that fo-43

cus on the features of individual objects. Examples of such real-world objects include audio44

signals, seismograms, DNA sequences, electrocardiograms, and magnetic-resonance images.45

While these objects are complex and may have many subtle features that are hard to recog-46

nize, there exists a well-defined distance function on pairs of objects that is easy to compute.47

For instance, individual DNA sequences have many complex and subtle features, but the edit48

distance1 between two DNA sequences is well defined and easy to compute.49

Second, because FastMapSVM generates a Euclidean embedding, it provides a perspicuous50

visualization of the objects and the classification boundaries between them. This aids human51

interpretation of the data and results. It also enables a human-in-the-loop framework for refining52

the processes of learning and decision making. Moreover, FastMapSVM is able to produce the53

visualization very efficiently because it invests only linear time in generating the Euclidean54

embedding.55

Third, FastMapSVM uses significantly smaller amounts of time and data for model training56

compared to other ML algorithms. This is because, given N objects and their classification57

labels (training instances), FastMapSVM leverages O(N2) pieces of information via a distance58

function that is defined on every pair of objects. In contrast, ML algorithms that focus on indi-59

vidual objects leverage only O(N) pieces of information. Despite considering O(N2) pieces of60

information to generate a Euclidean embedding, FastMapSVM invests only O(N) time to do61

so.62

1The edit distance between two strings is the minimum number of insertions, deletions, or substitutions that are
needed to transform one to the other.
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Fourth, FastMapSVM extends the applicability of SVMs and kernel methods to domains63

with complex objects. SVMs and associated kernel methods [5] constitute a very powerful64

ML framework for classification tasks. However, they are generally applicable only when the65

objects can be represented in a geometric space. As mentioned before, in many real-world66

domains, it is unwieldy to represent all the features of a complex object in a geometric space.67

In such domains, FastMapSVM satisfies this requirement by generating an alternative low-68

dimensional Euclidean embedding via a distance function.69

In this paper, we demonstrate the efficiency and effectiveness of FastMapSVM in the con-70

text of classifying seismograms. In fact, this is a particularly illustrative domain because seis-71

mograms are complex objects with subtle features indicating diverse energy sources such as72

earthquakes, ocean-Earth interactions, atmospheric phenomena, and human-related activity.73

We address two fundamental, perennial questions in seismology: (a) Does a given seismo-74

gram record an earthquake? and (b) Which type of wave motion (e.g., compressional versus75

shear strain) is predominant in an earthquake seismogram? In Earthquake Science, answering76

these questions is referred to as detecting earthquakes and identifying phases, respectively. The77

development of efficient, reliable, and automated solution procedures that can be easily adapted78

to new environments is critical to modern research and engineering applications in this field,79

such as in developing Earthquake Early Warning Systems. Towards this end, we show that80

FastMapSVM is a viable ML framework. Through experiments, we show that FastMapSVM’s81

various performance measures, such as precision, recall, and accuracy, are comparable to that82

of other state-of-the-art methods. However, we also show that, compared to those methods,83

FastMapSVM uses significantly smaller amounts of time and data for model training. More-84

over, FastMapSVM provides a perspicuous visualization of the seismograms, their spread, and85

the classification boundaries between them.86

The key novel contributions of this paper are as follows:87
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1. We advance FastMapSVM as an advantageous alternative to other ML algorithms for88

general classification tasks, such as NNs, by elucidating its algorithmic attributes.89

2. We demonstrate that FastMapSVM performs comparably to state-of-the-art NNs for clas-90

sifying seismograms using two orders of magnitude less time and data for model training.91

3. We illustrate how domain knowledge can be explicitly incorporated into the classification92

task via the user-specified distance function.93

4. We show how FastMapSVM extends the applicability of SVMs and kernel methods to94

domains with complex objects.95

5. We provide an efficient implementation of FastMapSVM.96

Results97

Data98

We assess the performance and robustness of FastMapSVM using two data sets. All waveforms99

used in this paper are bandpass filtered between 1 Hz and 20 Hz before analysis using a zero-100

phase Butterworth filter with four poles; we refer to this frequency band as our passband.101

Stanford Earthquake Data Set (STEAD). The first data set is the Stanford Earthquake Data102

Set (STEAD) [6], a benchmark data set for training and testing algorithms in Earthquake Sci-103

ence, with over 1.2 million carefully curated, three-component (3C) seismograms. Data in104

STEAD contain signals from approximately 450 000 different earthquakes—each recorded by105

a seismometer located within 350 km of the epicenter—and represent seismic activity on every106

continent except Antarctica. About 100 000 signals in STEAD comprise only noise (i.e., do not107

contain earthquake-related signals).108
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We use the entire STEAD data set to assess model performance for detecting earthquakes109

and subsets of various sizes (appropriately indicated below) to assess model sensitivity to train-110

ing data size and hyperparameters. To assess model performance for identifying phases, we use111

a subset of 538 three-second, 3C seismograms from STEAD, all of which were recorded by112

station TA.109C; 269 start 1 s before a compressional (P-wave) phase arrival, and 269 start 1 s113

before a shear (S-wave) phase arrival.114

Ridgecrest Data Set. The second data set, which we simply refer to as the Ridgecrest data115

set, comprises data recorded by station CI.CLC of the Southern California Seismic Network116

(SCSN) [7] on 5 July 2019, the first day of the aftershock sequence following the 2019 Ridge-117

crest, CA, earthquake pair, and on 5 December 2019, five months after the mainshocks. We use118

the earthquake catalog published by the Southern California Earthquake Data Center (SCEDC) [8]119

to extract 512 eight-second, 3C seismograms, 256 of which record both P- and S-wave phase120

arrivals from a nearby aftershock, and the remaining 256 of which record only noise. All 512121

of these signals were recorded on 5 July 2019.122

We use the Ridgecrest data set to first demonstrate the robustness of FastMapSVM against123

noisy perturbations. We then use it to demonstrate FastMapSVM’s ability to detect new mi-124

croseisms by automatically scanning a 600 s, continuous, 3C seismogram recorded between125

01:00:00 and 01:10:00 (UTC) on 5 December 2019. Whereas the analysis on the STEAD data126

set demonstrates FastMapSVM’s performance on a benchmark, the analysis on the Ridgecrest127

data set provides an example of a more realistic use case of FastMapSVM: After handpicking128

only a small number of earthquake and noise signals—a task that even a novice analyst can129

perform in a few hours—continually arriving seismic data can be automatically scanned for130

additional earthquake signals. This capability manifests the primary conclusion of the preced-131

ing robustness test: Even when earthquake signals are difficult to discern by the human eye,132
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FastMapSVM can often reliably detect them.133

STEAD Analysis134

Detecting Earthquakes in STEAD. The EQTransformer DL model [9] for simultaneously135

detecting earthquakes and identifying phase arrivals is arguably the most accurate, publicly136

available model for this pair of tasks. The authors of EQTransformer report perfect precision137

and recall scores for detecting earthquakes in 10 % of the STEAD waveforms after training138

its more than 300 000 model parameters with 85 % (i.e., ∼1.08×106) of the STEAD wave-139

forms; 5 % of the STEAD waveforms were reserved for model validation.140

Using only ∼1 % (i.e., 16 384) of the STEAD waveforms, we train FastMapSVM and clas-141

sify the remaining 99 % of the data (∼1.477×106 waveforms) with precision, recall, and ac-142

curacy scores of 0.995, 0.973, and 0.975, respectively. Fig. 1 and Table 1 summarize these143

performance results. Equal numbers of randomly selected noise and earthquake waveforms144

make up the training data set, whereas ∼2.272×105 noise and ∼1.249×106 earthquake wave-145

forms, respectively, make up the test data set. FastMapSVM incorrectly labels only 2.8 % of146

noise waveforms as earthquakes and 2.7 % of earthquake waveforms as noise.147

Table 1. Model performance comparison. Shows a comparison between the detec-
tion performances of FastMapSVM and other NN models trained on the STEAD data
set. Performance data for EQTransformer and CRED are taken from Table 1 of [9].

Model Precision Recall F1 Training Size Reference

EQTransformer 1.0 1.0 1.0 1.2×106 [9]
CRED 1.0 0.96 0.98 1.2×106 [10]
FastMapSVM 1.0 0.97 0.98 1.6×104 This article

The model, which comprises of a 32-dimensional Euclidean embedding of seismograms,148

took 26 minutes to train on a 64-core workstation. This is significantly smaller in comparison149

to the training requirements of EQTransformer, which took roughly 89 hours on 4 parallel Tesla-150
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Fig. 1. FastMapSVM’s performance detecting earthquakes in STEAD. Shows the
performance of FastMapSVM on the STEAD data set for classifying Earthquake and
Noise signals. (a) shows the Receiver Operating Characteristic (ROC) curve and the
corresponding Area Under the Curve (AUC). In its inlay, it also shows the precision,
recall, and accuracy achieved with the best model parameters. (b) shows the confusion
matrix for the learned model with respect to classifying the Earthquake (EQ) and Noise
signals.
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V100 GPUs [9]. Classifying the test data took FastMapSVM roughly 5 hours. Using two or-151

ders of magnitude less training data and time, FastMapSVM competes with leading NN models152

trained to detect earthquakes using the STEAD data set. The complexity of the EQTransformer153

model (and the resultant demands placed on training data and time) are partly due to the fact154

that it detects earthquakes and identifies phases simultaneously. Although FastMapSVM can be155

trained for both of these tasks, a separate model must be trained for each. FastMapSVM con-156

vincingly outperforms the CRED model [10], which only detects earthquakes and was trained157

using the same data set as EQTransformer.158

Sensitivity to Training Data Size and Hyperparameters. Two important questions concern-159

ing FastMapSVM are: (a) How much training data is needed to train the model? and (b) How160

many Euclidean dimensions are needed to represent the objects being classified? We address161

both these questions below.162

To assess FastMapSVM’s sensitivity to the amount of training data used, we obtain a suite163

of FastMapSVM models trained with various amounts of data. We score their performances on164

a subset of 16 384 test waveforms randomly selected from STEAD. We ensure that the test data165

is balanced with equal numbers of earthquake and noise seismograms (Fig. 2a). The precision166

appears relatively insensitive to the amount of training data; however, the accuracy and recall167

increase significantly with the amount of training data. This implies that the FastMapSVM168

models seldom classify noise as an earthquake, irrespective of the amount of training data. On169

the other hand, the frequency with which they classify earthquakes as noise decreases as the170

amount of training data increases. Such behaviour is unsurprising because it is highly unlikely171

for a noise signal to be more similar to a reference earthquake signal than to a reference noise172

signal, regardless of how many earthquake signals it is compared to. In contrast, it is relatively173

more likely for an earthquake signal to be sufficiently dissimilar from all reference earthquake174
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signals and consequently get classified as noise when the number of reference earthquake sig-175

nals is small. Therefore, generally speaking, correctly identifying noise is an easier task than176

correctly identifying an earthquake.177

To assess FastMapSVM’s sensitivity to the dimensionality of the Euclidean embedding,178

we obtain a suite of FastMapSVM models with a varying number of dimensions. We score179

their performances on the same balanced subset of test waveforms used to assess the model180

sensitivity to training data size above (Fig. 2b). All performance metrics, particularly, the re-181

call, improve with an increasing number of dimensions. Moreover, the performance results182

are indicative of the “diminishing returns” property: Strong performance can be achieved with183

low-dimensional Euclidean embeddings, although small improvements are possible with high-184

dimensional Euclidean embeddings. The diminishing returns property is an attractive property185

from the perspective of visualization in low-dimensional Euclidean spaces and from the per-186

spective of trading off performance against memory.187

Identifying Phase Arrivals. As another illustration designed to demonstrate the effective-188

ness of the FastMapSVM framework, we use STEAD to train a model with a 32-dimensional189

Euclidean embedding. This model is trained to discriminate P- and S-wave phases using 268190

seismograms from STEAD extracted for station TA.109C. We then test the model on 270 seis-191

mograms with classification accuracy, precision, and recall scores of 0.970, 0.891 , and 0.970,192

respectively (Fig. 3). The training and test data used in this analysis are both balanced across193

the P- and S-wave classes. Although these scores are relatively modest in comparison to those194

of state-of-the-art NNs designed for similar tasks, they demonstrate that FastMapSVM can be195

easily trained for strong performance using only small amounts of time and data.196
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Fig. 2. FastMapSVM’s sensitivity to size of training data and Euclidean embed-
ding. Shows the performance of FastMapSVM on the STEAD data set for varying
training data size and number of dimensions used for the Euclidean embedding. (a)
shows the influence of the training data size, measured using the metrics of balanced
accuracy, F1 score, precision, recall, and ROC AUC. (b) shows the influence of the
number of dimensions used for the Euclidean embedding, measured using the same
metrics.
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Fig. 3. FastMapSVM’s performance identifying phases for station TA.109C in
STEAD. Shows the performance of FastMapSVM on the STEAD data set for clas-
sifying P- and S-waves. (a) shows the ROC curve and the corresponding AUC. (b)
shows the confusion matrix for the learned model with respect to classifying the P- and
S-waves recorded by station TA.109C.
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Ridgecrest Analysis197

Robustness against Noisy Perturbations. It is critical that a classification framework is ro-198

bust against noisy perturbations of inputs. In general, the robustness of FastMapSVM against199

noisy perturbations may depend on the characteristics of the data and the chosen distance func-200

tion. For classifying seismograms, we demonstrate FastMapSVM’s robustness against noisy201

perturbations made to the Ridgecrest data set using the correlation distance described in the202

Materials and Method section. We randomly select 8 earthquake signals and 8 noise signals203

to train a FastMapSVM model with a 4-dimensional Euclidean embedding. Each of the 496204

remaining seismograms is circularly shifted by an offset (in seconds) chosen uniformly at ran-205

dom from the interval [−2, 2]. FastMapSVM has a nearly perfect classification accuracy; 2206

noise signals are incorrectly labeled as earthquakes. We conduct a subsequent set of experi-207

ments in which this model’s performance is scored after perturbing signals in the test data set208

with increasing amounts of Gaussian noise. For each trial, we perturb each signal in the test209

data set by adding Gaussian noise with mean 0 and standard deviation σ; σ increases by 0.5210

after each trial. Fig. 4a shows how a waveform changes with increasing σ. Fig. 4b shows the211

performance of FastMapSVM with increasing σ. We observe that FastMapSVM continues to212

classify seismograms with high fidelity, even as earthquake signals become indiscernible to the213

human eye; e.g., the FastMapSVM model achieves >90 % accuracy and precision for σ = 3.214

At first glance, some of the results of the foregoing experiments are counterintuitive. The re-215

call remains at or close to 1 irrespective of the amplitude of the noisy perturbations. The model216

also accurately identifies earthquakes regardless of the magnitude of the noisy perturbations.217

In fact, the model misclassifies noise signals as earthquake signals more frequently when the218

magnitude of the noisy perturbations is increased. With enough added noise, the model clas-219

sifies all signals as earthquake signals. This is because of the unique frequency content of the220

noisy perturbations (Supplementary Fig. S1). In our passband, the average frequency spectrum221
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Fig. 4. FastMapSVM’s robustness against noisy perturbations. Shows the per-
formance of FastMapSVM on the Ridgecrest data set. (a) shows how a sample test
waveform changes with the addition of increasing levels of Gaussian random noise
with mean 0 and standard deviation σ. It uses a vertical time-axis and an increasing
σ on the horizontal axis. (b) shows how the metrics of balanced accuracy, F1 score,
precision, and recall change with increasing σ.
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of earthquake signals is nearly flat; whereas the average frequency spectrum of noise signals222

has prominent peaks near the low- and high-frequency endpoints. Because the noisy perturba-223

tions are Gaussian, their frequency spectrum is flat. This makes the frequency spectra of noisy224

perturbations more similar to those of earthquake signals than those of real noise signals. Thus,225

the recall and F1 scores get inflated when the amount of added noise increases. However, the226

accuracy and precision remain unbiased because accuracy is insensitive to false positives and227

precision penalizes false positives in equal proportion to rewarding true positives.228

Automatic Scanning. We further demonstrate a use case-inspired application of FastMapSVM.229

We first train a model with 128 earthquake signals and 128 noise signals selected randomly230

from the Ridgecrest data set. We then use the trained model to automatically scan and detect231

earthquakes in a 600 s, continuous seismogram recorded by station CI.CLC between 01:00:00232

and 01:10:00 (UTC) on 5 December 2019. We validate the results after automatically scan-233

ning the data. During this time period, the SCEDC earthquake catalog reports no earthquakes234

within 100 km of CI.CLC; however, FastMapSVM identifies 19 windows with earthquakes. Of235

these, 9 contain clear earthquake signals with easily discernible P- and S-wave arrivals (Fig. 5a).236

Another 7 of them contain signals that we believe are from earthquake sources but are difficult237

to discern, either because they have low signal-to-noise ratios, secondary phase arrivals, or238

both (Fig. 5b). The remaining 3 of them have ambiguous signals that may or may not be from239

genuine earthquake sources (Fig. 5c). The complete set of waveforms identified as containing240

earthquakes in this test, along with our manual categorizations of them, are available in the241

Supplementary Material (Figs. S2, S3, and S4).242
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Fig. 5. Example results from an automatic scan for earthquakes using
FastMapSVM. Shows example results of automatically scanning 600 s of data
recorded by station CI.CLC. (a) shows a clear earthquake signal with easily discernible
P- and S-wave arrivals. (b) shows an earthquake signal with low signal-to-noise ratio.
The P- and S-wave arrivals are close to the noise level. (c) shows an ambiguous signal
that may or may not be from an earthquake source.
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Discussion243

Although our conception and development of FastMapSVM is our own original and indepen-244

dent work, it is not entirely novel. In fact, Ban et al. [4] presented a virtually identical concept.245

Their key contribution was to combine the power of kernel methods, which typically require246

formulating an optimization problem in dual form, with learning algorithms formulated in the247

more efficient primal form (e.g., linear SVMs). To achieve this, Ban et al. [4] first map in-248

put data features to an empirical feature space using sparse representations of Radial Basis249

Function kernels, after which they employ a linear SVM to classify instances in this empirical250

feature space. They assess the performance of kernel Principal Component Analysis and three251

variants of FastMap for sparsely representing the non-linear kernel within this framework; how-252

ever, they omit comparisons against any alternative methods, such as NNs. FastMapSVM has253

many advantages over existing ML methods for classifying complex objects like seismograms,254

which were largely overlooked by Ban et al. [4]. The potential of FastMapSVM was unrealized255

because these advantages were not made evident. In this section, we discuss some of these256

advantages, both in the specific context of classifying seismograms and in the general context257

of ML and data visualization.258

Many existing ML algorithms for classification do not leverage domain knowledge when259

used off the shelf. Although a domain expert can occasionally incorporate domain-specific260

features of the objects being classified into the classification task, doing so becomes increasingly261

difficult as the complexity of the objects increases. FastMapSVM enables domain experts to262

incorporate their domain knowledge via a distance function instead of relying on complex ML263

models to infer the underlying structure in the data entirely. In fact, in many real-world domains,264

it is easier to construct a distance function on pairs of objects than it is to extract features of265

individual objects. Examples include DNA strings, for which the edit distance is well defined,266
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images, for which the Minkowski distance [11] is well defined, and text documents, for which267

the cosine similarity [12] is well defined. In all these domains, extracting features of individual268

objects is challenging. In the seismogram domain, our a priori knowledge that earthquake269

seismograms typically bear similarities to one another is encapsulated in a distance function270

that quantifies the normalized cross-correlation of the waveforms. This distance metric closely271

resembles other similarity metrics that have been extensively used in previous works in the272

Earthquake Science community [13–15].273

In addition, many existing ML algorithms produce results that are hard to interpret or ex-274

plain. For example, in NNs, a large number of interactions between neurons with nonlinear275

activation functions makes a meaningful interpretation or explanation of the results challeng-276

ing. In fact, the very complexity of the objects in the domain can hinder interpretability and277

explainability. FastMapSVM mitigates these challenges and thereby supports interpretability278

and explainability. Although the objects themselves may be complex, FastMapSVM embeds279

them in a Euclidean space by considering only the distance function defined on pairs of objects.280

In effect, it simplifies the description of the objects by assigning Euclidean coordinates to them.281

Moreover, because the distance function is itself user-supplied and encapsulates domain knowl-282

edge, FastMapSVM naturally facilitates interpretability and explainability. It even provides a283

perspicuous visualization of the objects and the classification boundaries between them (Fig.284

6). FastMapSVM produces such visualizations very efficiently because it invests only linear285

time in generating the Euclidean embedding.286

FastMapSVM also uses significantly smaller amounts of time and data for model training287

compared to other ML algorithms. While NNs and other ML algorithms store abstract represen-288

tations of the training data in their model parameters, FastMapSVM stores explicit references289

to some of the original objects, referred to as pivots. While making predictions, objects in290

the test instances are compared directly to the pivots using the user-supplied distance function.291
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Fig. 6. Perspicuous visualization of seismograms and decision boundaries pro-
duced by FastMapSVM. Shows a visualization of FastMapSVM’s classification bound-
ary (dashed, white curve) and decision function (background) in a 2-dimensional Eu-
clidean embedding of the training data from the Ridgecrest data set. EQ refers to
earthquakes.
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FastMapSVM thereby obviates the need to learn a complex transformation of the input data and292

thus significantly reduces the amount of time and data required for model training. Moreover,293

given N training instances, FastMapSVM leverages O(N2) pieces of information via the dis-294

tance function, which is defined on every pair of objects. In contrast, ML algorithms that focus295

on individual objects leverage only O(N) pieces of information.296

In general, FastMapSVM extends the applicability of SVMs and kernel methods to domains297

with complex objects. With increasing complexity of the objects, deep NNs have gained more298

popularity compared to SVMs because it is unwieldy for SVMs to represent all the features299

of complex objects in Euclidean space. FastMapSVM, however, revitalizes the SVM approach300

by leveraging a distance function and creating a low-dimensional Euclidean embedding of the301

objects.302

Overall, any application domain hindered by a paucity of training data but possessing a well-303

defined distance function on pairs of its objects can benefit from the advantages of FastMapSVM.304

Examples of such applications in Earthquake Science include analyzing and learning from data305

obtained by distributed acoustic sensing technology or during temporary deployments of “large-306

N” nodal arrays. Furthermore, the efficiency of FastMapSVM makes it suitable for real-time307

deployment, which is critical for engineering Earthquake Early Warning Systems.308

Materials and Method309

Our FastMapSVM method comprises two main components: (a) The FastMap algorithm [16]310

for embedding complex objects in a Euclidean space using a distance function, and (b) SVMs311

for classifying objects in the resulting Euclidean space. We explain the key algorithmic concepts312

behind each of these components below.313
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Review of the FastMap Algorithm. FastMap [16] is a Data Mining algorithm that embeds314

complex objects—like audio signals, seismograms, DNA sequences, electrocardiograms, or315

magnetic-resonance images—into a K-dimensional Euclidean space, for a user-specified value316

of K and a user-supplied function D that quantifies the distance, or dissimilarity, between pairs317

of objects. The Euclidean distance between any two objects in the embedding produced by318

FastMap approximates the domain-specific distance between them. Therefore, similar objects,319

as quantified by D, map to nearby points in Euclidean space whereas dissimilar objects map320

to distant points. Although FastMap preserves O(N2) pairwise distances between N objects,321

it generates the embedding in only O(KN) time. Because of its efficiency, FastMap has al-322

ready found numerous real-world applications, including in Data Mining [16], shortest-path323

computations [17], and solving combinatorial optimization problems on graphs [18].324

Below, we review the FastMap algorithm [16] and describe our minor modifications to it.325

These modifications suit the purposes of the downstream classification task. Our review of326

FastMap also serves completeness and the readers’ convenience.327

FastMap embeds a collection of complex objects in an artificially created Euclidean space328

that enables geometric interpretations, algebraic manipulations, and downstream application of329

ML algorithms. It gets as input a collection of complex objects O and a distance function D(·, ·),330

where D(Oi, Oj) represents the domain-specific distance between objects Oi, Oj ∈ O. It gen-331

erates a Euclidean embedding that assigns a K-dimensional point pi = (pi,1, pi,2, . . . , pi,K) ∈332

RK to each object Oi. A good Euclidean embedding is one in which the Euclidean distance333

∥pi − pj∥2 =
√∑K

n=1(pi,n − pj,n)2 between any two points pi and pj closely approximates334

D(Oi, Oj).335

FastMap creates a K-dimensional Euclidean embedding of the complex objects in O, for336

a user-specified value of K. In the first iteration, FastMap heuristically identifies the farthest337

pair of objects Oa and Ob in linear time. Once Oa and Ob are determined, every other object Oi338
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Fig. 7. “Cosine law” employed by FastMapSVM. The “cosine law” projection in a
triangle.

defines a triangle with sides of lengths dai = D(Oa, Oi), dab = D(Oa, Ob), and dib = D(Oi, Ob)339

(Fig. 7). The sides of the triangle define its entire geometry, and the projection of Oi onto the340

line OaOb is given by341

xi = (d2ai + d2ab − d2ib)/(2dab). (1)

FastMap sets the first coordinate of pi, the embedding of Oi, equal to xi. In the subsequent342

K − 1 iterations, FastMap computes the remaining K − 1 coordinates of each object following343

the same procedure; however, the distance function is adapted for each iteration. In the first344

iteration, the coordinates of Oa and Ob are 0 and dab, respectively. Because these coordinates345

perfectly encode the true distance between Oa and Ob, the rest of pa and pb’s coordinates should346

be identical for all subsequent iterations. Intuitively, this means that the second iteration should347

mimic the first one on a hyperplane that is perpendicular to the line OaOb (Fig. 8). Although348

the hyperplane is never explicitly constructed, it conceptually implies that the distance function349

for the second iteration should be changed for all i and j in the following way:350

Dnew(O
′
i, O

′
j)

2 = D(Oi, Oj)
2 − (xi − xj)

2 (2)
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in which O′
i and O′

j are the projections of Oi and Oj , respectively, onto this hyperplane, and351

Dnew(·, ·) is the new distance function. The distance function is recursively updated according352

to Equation 2 at the beginning of each of the K − 1 iterations that follow the first.353

Selecting Reference Objects. As described before, in each of the K iterations, FastMap354

heuristically finds the farthest pair of objects according to the distance function defined for355

that iteration. These objects are called pivots and are stored as reference objects. There are ex-356

actly 2K reference objects in our implementation because we prohibit any object from serving357

as a reference object more than once; however this restriction is not strictly necessary. Techni-358

cally, finding the farthest pair of objects in any iteration takes O(N2) time. However, FastMap359

uses a linear-time “pivot changing” heuristic [16] to efficiently and effectively identify a pair of360

objects Oa and Ob that is very often the farthest pair. It does this by initially choosing a random361

object Ob and then choosing Oa to be the farthest object away from Ob. It then reassigns Ob to362

be the farthest object away from Oa.363

In our adaptation of FastMap as a component of FastMapSVM, we require the farthest pair364

of objects Oa and Ob in each iteration to be of opposite classes. This maximizes the discrimi-365

natory power of the downstream SVM classifier. We achieve this requirement by implementing366

a minor modification of the pivot changing heuristic: We initially choose a random object Ob.367

We then choose Oa to be the farthest object away from Ob and of the opposite class. We finally368

reassign Ob to be the farthest object away from Oa and of the opposite class. It is implied that all369

previously used reference objects are excluded from consideration in all subsequent iterations370

when selecting reference objects.371

For a test object not seen before, its Euclidean coordinates in the K-dimensional embedding372

can be computed by using only its distances to the reference objects. This is based on the373

reasonable assumption that the new test object would not preclude the stored reference objects374
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Fig. 8. Hyperplane projection employed conceptually by FastMapSVM. Projection
onto a hyperplane that is perpendicular to OaOb.
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from being pivots if the K-dimensional Euclidean embedding was recomputed along with the375

new test object. In any case, the assumption is not strictly required since the stored reference376

objects are close to being the farthest pairs.377

Choosing the Distance Function D. The distance function should yield non-negative values378

for all pairs of objects and 0 for identical objects. We can use a variety of distance functions,379

such as the Wasserstein distance, the Jensen-Shannon divergence, or the Kullback-Leibler diver-380

gence. We can also use more domain-specific knowledge in the distance function, as described381

below.382

In the Earthquake Science community, the normalized cross-correlation operator, denoted

here by ⋆, is popularly used to measure similarity between two waveforms. For two zero-mean,

single-component seismograms Oi and Oj with lengths ni and nj , respectively, and starting

with index 0, the normalized cross-correlation is defined with respect to a lag τ as follows:

(Oi ⋆ Oj)[τ ] ≜
1

σiσj

ni−1∑
m=0

Oi[m]Ôj[m+ ℓ− τ ] (3)

in which, without loss of generality, we assume that ni ≥ nj . σi and σj are the standard383

deviations of Oi and Oj , respectively. Moreover, ℓ and Ôj are defined as follows:384

ℓ ≜
nj − nj (mod 2)

2
− (ni (mod 2)) (1− nj (mod 2)) (4)

and385

Ôj[m] ≜

{
Oj[m] if 0 ≤ m < nj

0 otherwise
(5)

Equipped with this knowledge, we first define the following distance function that is appro-

priate for waveforms with a single component:

D(Oi, Oj) ≜ 1− max
0≤τ≤ni−1

|(Oi ⋆ Oj)[τ ]| (6)
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Based on this, we define the following distance function that is appropriate for waveforms with

L components:

D(Oi, Oj) ≜ 1− 1

L
max

0≤τ≤ni−1

∣∣∣∣∣
L∑
l=1

(Ol
i ⋆ O

l
j)[τ ]

∣∣∣∣∣ (7)

Here, each component Ol
i of Oi, or Ol

j of Oj , is a channel representing a 1-dimensional data386

stream. A channel is associated with a single standalone sensor or a single sensor in a multi-387

sensor array.388

We use the distance function defined in Equation 7 with L = 3 for 3C seismograms. Our389

choice is motivated by the extensive use of similar equations in Earthquake Science to detect390

earthquakes using matched filters [13–15]. We will investigate other distance functions in future391

work.392

Enabling SVMs and Kernel Methods. SVMs are particularly good for classification tasks.393

When combined with kernel functions, they recognize and represent complex nonlinear classi-394

fication boundaries very elegantly [5]. Moreover, soft-margin SVMs with kernel functions [19]395

can be used to recognize both outliers and inherent nonlinearities in the data. While the SVM396

machinery is very effective, it requires the objects in the classification task to be represented397

as points in a Euclidean space. Often, it is very difficult to represent complex objects like398

seismograms as precise geometric points without introducing inaccuracy or losing domain-399

specific representational features. In such cases, NNs have been more effective than SVMs.400

FastMapSVM revitalizes SVM technology for classifying complex objects by leveraging the401

following observation: Although it may be hard to precisely describe complex objects as geo-402

metric points, it is often relatively easy to precisely compute the distance between any two of403

them. FastMapSVM uses the distance function to construct a low-dimensional Euclidean em-404

bedding of the objects. It then invokes the full power of SVMs. The low-dimensional Euclidean405

embedding also facilitates a perspicuous visualization of the classification boundaries.406
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Implementing FastMapSVM. We have implemented FastMapSVM and have made it pub-407

licly accessible in a Python package available at: https://github.com/malcolmw/408

FastMapSVM. The most expensive computations, i.e., evaluations of the distance function,409

are parallelized using Python’s built-in multiprocessing module, which allows for the410

concurrent execution of multiple threads on a single host. FastMapSVM requires as input (a)411

the labeled training data set, (b) the distance function, and (c) a location to store the result-412

ing trained model. We used the scikit-learn SVM implementation and conducted a grid413

search for the optimal SVM hyperparameters.414

Conclusions and Future Work415

In this paper, we advance FastMapSVM—an interpretable ML framework that combines the416

complementary strengths of FastMap and SVMs—as an advantageous alternative to existing417

methods, such as NNs, for classifying complex objects. FastMapSVM offers several advan-418

tages. First, it enables domain experts to incorporate their domain knowledge using a distance419

function. This avoids relying on complex ML models to infer the underlying structure in the data420

entirely. Second, because the distance function encapsulates domain knowledge, FastMapSVM421

naturally facilitates interpretability and explainability. In fact, it even provides a perspicuous vi-422

sualization of the objects and the classification boundaries between them. Third, FastMapSVM423

uses significantly smaller amounts of time and data for model training compared to other ML424

algorithms. Fourth, it extends the applicability of SVMs and kernel methods to domains with425

complex objects.426

We demonstrated the efficiency and effectiveness of FastMapSVM in the context of classify-427

ing seismograms. On the STEAD data set, we showed that FastMapSVM performs comparably428

to state-of-the-art NN models in terms of precision, recall, and accuracy. It also uses signifi-429

cantly smaller amounts of time and data for model training compared to other methods. On the430
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Ridgecrest data set, we first demonstrated the robustness of FastMapSVM against noisy pertur-431

bations. We then demonstrated its ability to reliably detect new microseisms that are otherwise432

difficult to detect.433

In future work, we expect FastMapSVM to be viable for classification tasks in many other434

real-world domains. In Earthquake Science, we will apply FastMapSVM to analyze and learn435

from data obtained during temporary deployments of large-N nodal arrays and distributed436

acoustic sensing. In Computational Astrophysics, we anticipate the use of FastMapSVM for437

identifying galaxy clusters based on cosmological observations. In general, the efficiency and438

effectiveness of FastMapSVM also make it suitable for real-time deployment in dynamic envi-439

ronments.440

Our implementation of FastMapSVM is publicly available at: https://github.com/441

malcolmw/FastMapSVM.442
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Fig. S1. Average seismogram frequency spectra. Shows the typical frequency
spectra of real noise, earthquake signals, and added synthetic noise.
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Fig. S2. Earthquakes identified by automatic FastMapSVM scan for earthquakes.
Shows easily discernible earthquake signals.
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Fig. S3. Potential earthquakes identified by automatic FastMapSVM scan for
earthquakes. Shows earthquake signals with low signal-to-noise ratio.
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Fig. S4. Ambiguous signals identified as earthquakes by automatic FastMapSVM
scan. Shows ambiguous signals that may or may not be from an earthquake source.
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