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SUMMARY
Prior information is essential for statistical seismic inverse prob-
lems to quantify uncertainties of unknown subsurface param-
eters. Conventional prior knowledge is based on empirical
observations of subsurface structures like the smoothness of the
subsurface image. However, such hand-designed prior knowl-
edge is too generic to describe detailed subsurface structures.
Deep generator priors are a recent encouraging development,
where a high-quality prior can be crafted solely from existing
data and a deep neural network. Such deep generators can cre-
ate detailed subsurface models from Gaussian vectors in a low-
dimensional latent space. Alongside this potential advantage,
comes the major risk that the prior might be too restrictive to
give physically meaningful solutions a high enough likelihood.
In this work, we attempt to mitigate this risk by presenting a
measure to evaluate the quality of the learned deep generator
prior, which can then be leveraged to tune its hyperparameters.
Given a testing model and a generator, we first find the best
generated model that minimizes the `2-norm misfit between the
generated and testing models. To measure the quality of the
generator, we suggest two criteria: (1) the `2-norm model error
should be small; and (2) the `2-norm of the corresponding latent
vector should be bounded and within a pre-defined reference
range. Numerical examples show that a good prior generator
in the sense of the proposed measure can help produce more
accurate results for statistical seismic inverse problems.

INTRODUCTION
Geophysicists require statistical information of subsurface pa-
rameters to understand the interior of the Earth. For this pur-
pose, statistical approaches, and in particular the Bayesian
inference method (Kaipio and Somersalo, 2006), are desirable
and necessary. The Bayesian inference method has been ap-
plied to many geophysical problems (Tarantola and Valette,
1982b; Fang et al., 2018). It considers unknown parameters
as random variables and aims at a posterior probability den-
sity function (PDF) that incorporates all available statistical
information from both the observations in a likelihood PDF and
researchers’ prior knowledge in a prior PDF. These statistics
reflect the degree of confidence about the unknown parameters
and allow researchers to identify areas with high/low reliability
in the model.

The prior knowledge plays a key role in the Bayesian inverse
problem. Conventional prior knowledge is hand-crafted based
on researchers’ empirical observations about subsurface struc-
tures. For instances, because subsurface structure images are
generally piecewise smooth and sparse after wavelet or curvelet
transformations, image priors that constrain the sparsity of
wavelet or curvelet coefficients (Ying et al., 2005; Tu and Her-
rmann, 2015) or spatial gradients (Haber et al., 2000) are widely

utilized. While these hand-crafted priors can regularize the un-
known parameters when solving deterministic inverse problems,
they are usually too generic, in that prior models generated with
these prior PDF cannot describe detailed structures.

Recent developments in deep convolutional neural networks
(DCNN) (Krizhevsky et al., 2012) provide researchers with a
new way to design the prior knowledge, i.e. a learning-based
prior generator. Different from hand-crafted priors, learning-
based approaches train DCNNs that learn features from existing
samples. The trained DCNN is designed to generate images
sharing similar distributions of natural samples. Mosser et al.
(2020) and Herrmann et al. (2019) show the potential applica-
tions of applying DCNN to seismic inverse problems like full
waveform inversion and least-squared reverse time migration.

Despite the potential advantages of learning-based prior gener-
ators in producing detailed subsurface models, a quantitative
measure that evaluates the quality of different generators re-
main unresolved. This issue is consequential: the new point
of view represents a swing from human-made priors that are
generally too loose, to network-based priors that might be way
too restrictive. In this work, we propose a quality measure
for deep generators that is at the same time computable and
informative of the quality of the resulting prior.

Following Mosser et al. (2020), we use a deep generative ad-
versarial network (DGAN) (Goodfellow et al., 2014) as our
generator and train it with given velocity models. One ap-
pealing property of DGAN for the Bayesian inversion lies in
its potential capability in generating perceptually appealing
high-dimensional images from a Gaussian vector in a low-
dimensional latent parameter space (Ledig et al., 2017). In
addition, the prior distribution in the latent space is a standard
normal distribution. We evaluate the trained generator with
several models from a testing velocity set. Our quality mea-
sure is based on two straightforward requirements for a good
generator: (1) the testing model should be in the range of the
generator, or the difference between the best generated and test-
ing models should be small; (2) since the prior distribution is a
standard normal distribution, the corresponding latent vector of
the matching generated model should have a moderate `2-norm
as a measure of plausibility. We use these two requirements to
derive our quality measure.

METHODOLOGY
Bayesian inference
The Bayesian inference method aims at a comprehensive sta-
tistical description of the unknown parameters. It constructs a
posterior PDF of the model parameters m, integrating statistical
information from the forward map F(m), observed data d, and
researcher’s prior knowledge. According to the Bayes’ law,
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the posterior PDF ρpost(m|d) of m given d is proportional to
the product of a likelihood PDF ρlike(d|m) of d given m and a
prior PDF ρprior(m) of m as follows:

ρpost(m|d) ∝ ρlike(d|m)ρprior(m). (1)

The prior PDF ρprior(m) describes one’s prior knowledge and
beliefs in the unknown model parameters, and the likelihood
PDF ρlike(d|m) describes the probability of observing data d
given the model m. With the posterior PDF in hands, we can
extract statistics of interests including the maximum a poste-
rior (MAP) estimate, model covariance matrix, model standard
deviation (STDev), and confidence interval of m.
Deep GAN model prior generator
The selection of the prior PDF plays an important role in the sta-
tistical inversion. Different from the conventional hand-crafted
priors, Mosser et al. (2020) shows that we can use a DGAN
to train a prior generator directly from existing subsurface im-
ages. Here, we use a least-squares DGAN (LS-DGAN) (Mao
et al., 2017) to design such a generator. Given a training set
M , LS-DGAN aims to generate artificial samples sharing the
same statistics as the training samples. Similar to standard
DGANs, LS-DGAN consists of two neural networks namely
the generator G(x;ΘG) and the discriminator D(m;ΘD), which
are parameterized by vectors ΘG and ΘD. The generator creates
candidates of interests from vectors x’s obeying a distribution
X in a low-dimensional latent space, while the discriminator
uses an a-b coding scheme to distinguish these generated candi-
dates from the true data distribution. Parameters a and b denote
the labels for generated samples and real samples. The dis-
criminator tries to decrease the error rate of the discriminative
network, while the generator tries to increase the error rate. To
train the two networks, LS-DGAN solves the following minmax
optimization problem:

min
ΘG

max
ΘD

Em∼M [D(m;ΘD)−a]2

+Ex∼X [D(G(x;ΘG);ΘD)−b]2.
(2)

where the expectation for m is over all training samples in
M , and the expectation for x is over the distribution X . In
general, X can be a set of images or any reasonable predefined
distributions. Here, we select X to be a standard Gaussian
distribution N (0,I) for a series of computational advantages
in the following statistical inversion.

The generator G(x;ΘG) defines an nl-manifold in Rng , where
nl� ng. With the additional assumption that the observed data
contain additive Gaussian noise ε ∼N (0,Σ) with a covariance
matrix Σ, we can reformulate the original Bayesian inversion
problem on the nl-manifold as follows,

ρpost(x|d) ∝ exp(−1
2
‖F(G(x;ΘG))−d‖2

Σ−1 −
1
2
‖x‖2). (3)

Compared to the original posterior PDF in Equation 1, studying
the new posterior PDF ρpost(x|d) has three advantages. First,
we reduce the dimensionality from ng to nl, which makes the
new Bayesian inversion problem less suffer from the curse of
dimensionality. Secondly, the Gaussian prior distribution is
directly from the definition of the LS-DGAN generator without
any hand designs. Finally, the Gaussian prior distribution en-
ables us to apply the computationally efficient Markov chain

Monte Carlo (McMC) method – preconditioner Cranks Nickos
method (Cotter et al., 2013) to sample the posterior PDF.
Quantitative measure for quality control
To derive the quantitative measure for the quality control of
deep generators, we notice two facts for a good generator: (1)
the testing model should be in the range of the generator or at
least close to the range of the generator; (2) the latent vector
of the best generated model matching the testing model should
lie in the high probability zone of the prior distribution. To
evaluate both requirements, given a testing model mtest, we first
find its best representative by solving the following problem:

xtest = argmin
x

1
2
‖mtest−G(x;ΘG)‖2. (4)

The first requirement asks for the relative error e = ‖mtest−
G(xtest;ΘG)‖/‖mtest‖ to be small. The second requirement
needs to utilize the property of the prior distribution on x. Since
the prior distribution is a standard normal distribution, a vector
lies in a high probability zone should have a small `2-norm
magnitude. This asks for ‖xtest‖ smaller than a reference value
ν . Moreover, the latent vector with bounded `2-norm magnitude
also ensures that the generator is not overfitting as a result of
ill-conditioning. A good choice for ν would be the average `2-
norm of all possible samples from the prior distribution. Finally,
there is the issue that G(x;ΘG) is nonconvex as a function of
x, which is mitigated – empirically and to a good extent – by
considering a large number of random initializers.

SEISMIC INVERSION APPLICATIONS
We assess the effectiveness of the proposed quality measure
by conducting Bayesian seismic inversions with traveltime to-
mography (TT) (Aki et al., 1977) and full waveform inversion
(FWI) (Tarantola and Valette, 1982a). To conduct experiments,
we first train the LS-DGAN using velocity slices extracted from
the 3D Overthrust model. Then, we conduct statistical inver-
sions with the trained generators on a different velocity slice
extracted from the Overthrust model.
Training the network architecture
Network architectures. We design three generators with dif-
ferent numbers of layers and apply the proposed measure to
evaluate their qualities. The three generative networks (GN)
consist of eight, six, and four block layers, respectively. To
simplify the notation, we name them GN-8, GN-6, and GN-4,
respectively. We also design a discriminative network with three
block layers. Following Mao et al. (2017), each block includes
parts of the following operations or networks: fully-connected
networks, deconvolutional neural networks, convolutional neu-
ral networks, batch normalizations, dropout operations, leaky
ReLU activations, and tanh activation functions. The gener-
ative networks map a random vector x ∼ N (0,I50×50) to a
64×64 velocity image, while the discriminative network maps
a 64×64 velocity image to a real number that aims to fit the
labels a = 0 and b = 1 for the real and generated samples.

Training. We train the generative and discriminative networks
with velocity models extracted from the 3D Overthrust model.
We extract 19,762 velocity models with the size of 64×64 from
the 3D volume and rotate them with random angles, yielding
79,048 velocity models. We use these models to train the
generators and discriminator. We use the Adam optimizer to
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train the networks, and select the momentum parameter γ = 0.9,
mini-batch size Lb = 256, and initial rate µ = 1e-4.
Sample comparison of different generators
We compare the performance of the three generators in pro-
ducing samples. Figure 1 shows a comparison of the images
from the training set and the three generative networks. Vi-
sually, it is difficult to evaluate these images, since they all
present some layered structures as shown in the training set.
To further evaluate the three generators, we use each gener-
ator to produce 50,000 samples and compute the point-wise
STDev and probability density of the 50,000 samples. Figure 2
shows the comparison of the STDevs of the training samples
and generated samples of the three generators. The STDevs
corresponding to GN-8 and GN-6 match with that of the train-
ing samples much better than the one of GN-4. Figure 3 shows
the comparison of the point-wise probability densities at three
different locations. Clearly, the probability densities of GN-8
and GN-6 coincide with that of the training samples much better
than the one of GN-4. Both comparisons imply that increasing
the number of layers can yield a generator that can capture the
distribution of the training set more accurately.

(a) Training samples

(b) Generated samples (GN-8)

(c) Generated samples (GN-6)

(d) Generated samples (GN-4)

Figure 1: Comparison of images from (a) training set, (b) GN-8,
(c) GN-6, and (d) GN-4.
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Figure 2: Comparison of STDevs of (a) training samples, and
samples generated by (b) GN-8, (c) GN-6, and (d) GN-4.
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(c) z = 240 m, x = 200 m
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Figure 3: Comparison of probability densities of training sam-
ples (solid) and samples generated by GN-8 (dashed), GN-6
(dotted), and GN-4 (dashdot) at locations: (a) z = 60m,x =
60m; (b) z = 120m,x = 120m; and (c) z = 240m,x = 200m.
Generator quantitative evaluation
We use the proposed quality measure to evaluate the three
generators. We first select three testing models mt,i (1≤ i≤ 3)

from the Overthrust model, which are not in the training set.
Then for the jth generator (1 ≤ j ≤ 3) and each mt,i, we find
the best representative x j,i in the latent space by solving the
optimization problem in Equation 4. To solve this optimization
problem, we first generate 1000 samples and select the one
xini, j,i that produces the least `2-norm misfit. We start with
xini, j,i and use 100,000 gradient descent steps to find the optimal
solution. Figure 4 shows the three selected models and their
corresponding best generated models {mg, j,i}1≤i, j≤3 produced
by the three generators. Clearly, the generated models given by
GN-8 are much closer to the testing models, compared to GN-6
and GN-4.

Figure 5 plots the relative model error and logarithm `2-norm
of the latent vector for each generated model. For a good prior
generator, we expect that all the points should be at the bottom
of the Gaussian zone (gray area). Clearly, GN-8 produces
results with minimal relative model errors. Meanwhile, the
‖x j,i‖ of the GN-8 results are closer to the Gaussian zone. This
test illustrates that compared to GN-6 and GN-4, GN-8 has
a stronger capability in representing testing models, which
implies a stronger generality of GN-8.
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Figure 4: (a),(e), and (i) The three selected testing models; (b),
(f) and (j) the three generated models of GN-8; (c), (g) and (k)
the three generated models of GN-6; (d), (h) and (l) the three
generated models of GN-4;

Figure 5: `2-norm relative model error ‖mt,i−mg, j,i‖2
‖mt,i‖2

between
the testing models {mt,i} and the generated models {mg, j,i}
of GN-8 (?), GN-6 (×) and GN-4 (∆) v.s. logarithm `2-norm
of their latent vectors x j,i. The gray area represents the range
of the `2-norm of standard Gaussian random vectors with the
size of the latent vector. The indices 1, 2, and 3 label different
testing model scenarios.
Statistical inversion
We conduct the Bayesian inversion with a testing velocity model
mt extracted from the 3D Overthrust model (Figure 6a) that is
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not in the training set. Since both the testing and training mod-
els are extracted from the 3D Overthrust model, their spatial
distributions should share a strong similarity and the prior gen-
erator should provide good prior information for the inversion.

TT example. We first conduct the statistical inversion with TT.
We mimic a cross-hole case, where 30 sources (?) are located
at the left side of the model and 60 receivers (∆) are located at
the right side of the model as shown in Figure 6a. The model
size is 258 m × 258 m. We rescale the velocity model so that
the range of the velocity is [2.4km/s,2.7km/s]. The observed
data contain 0.5% additive Gaussian noise.
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Figure 6: (a) True model with indicated source (?) and receiver
(∆) locations; MAP estimates of the three chains associated
with (b) - (d) GN-8, (e) - (g) GN-6, and (h) - (j) GN-4.

We conduct Bayesian inversions with the three generators to
compare their performances. For each generator, we use three
different starting points to draw three Markov chains with
100,000 samples to study the influence of starting points to
inversion results. We use the pCN method to produce the 9
Markov chains with a burn-in period of 30,000 steps. We select
the step size for pCN to ensure an average acceptance ratio of
0.4.

Figures 6b - 6j show the MAP estimates of the 9 Markov chains,
and Figure 6k shows the `2-norm model error between each
MAP estimate and the true model. From Figures 6, we can
observe that the GN-8 outperforms GN-6 and GN-4 from the
perspective of matching structures. The MAP estimates of GN-
8 matches most layered structures in the true model, despite
some mismatches at the boundary of the model. Figure 6k
shows that GN-8 produces MAP estimates with the minimal
model errors. Moreover, the variation of the three MAP esti-
mates of GN-8 is visually smaller than that of GN-6 and GN-4.

We compute the point-wise STDevs for all the 9 chains. For
each generator, we also compute the STDev from the ensemble
of the three individual chains. Figure 7 shows all the computed
STDevs. Overall, we can observe large STDevs around the
boundary of layers and small STDevs inside layers. Comparing
STDevs of individual chains with STDevs of their correspond-
ing ensembles, we can observe that the difference between
STDevs of individual chains and the ensemble chain associated
with GN-8 is significantly smaller than those associated with
GN-6 and GN-4. This result coincides with the observation that
MAP estimates of GN-8 have the smallest variation.

FWI example. We use GN-8 and conduct the second statistical
inversion with the application of FWI. We use the same velocity
model as the one used in the first example. We also mimic a

0 50 100 150 200 250
X [m]

0

50

100

150

200

250

Z 
[m

]

(a) GN-8 (chain 1)

0 50 100 150 200 250
X [m]

0

50

100

150

200

250

Z 
[m

]

(b) GN-8 (chain 2)

0 50 100 150 200 250
X [m]

0

50

100

150

200

250

Z 
[m

]

(c) GN-8 (chain 3)

0 50 100 150 200 250
X [m]

0

50

100

150

200

250

Z 
[m

]

(d) GN-8 (all chains)

0 50 100 150 200 250
X [m]

0

50

100

150

200

250

Z 
[m

]

(d) GN-6 (chain 1)

0 50 100 150 200 250
X [m]

0

50

100

150

200

250

Z 
[m

]

(e) GN-6 (chain 2)

0 50 100 150 200 250
X [m]

0

50

100

150

200

250

Z 
[m

]

(f) GN-6 (chain 3)

0 50 100 150 200 250
X [m]

0

50

100

150

200

250

Z 
[m

]

(g) GN-6 (all chains)

0 50 100 150 200 250
X [m]

0

50

100

150

200

250

Z 
[m

]

(g) GN-4 (chain 1)
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(j) GN-4 (all chains)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 7: STDevs of the three chains and their ensembles
associated with (a) - (d) GN-8 , (e) - (g) GN-6, and (g) - (j)
GN-4.

cross-hole case, in which we place 8 sources at the left side of
the model and place 64 receivers at the right side of the model.
Figure 8a shows the true model and locations of sources and
receivers. We use a Ricker wavelet centered at 10Hz to simu-
late the data with 1% additive Gaussian noise. We use the same
strategy as mentioned in the first example to select the starting
point and use the pCN method to generate 100,000 samples
with a burn-in period of 30,000 steps. We compute statistics of
interests with the remaining 70,000 samples. Figure 8b shows
the MAP estimate of the 70,000 samples. Clearly, the MAP
estimate matches the true model quite well. As a comparison,
Figure 8c shows the result of the conventional FWI using the
same starting point. We can observe that the MAP estimate
obtained by the proposed method presents a better resolution
compared to the conventional FWI that directly works on the
physical domain. Figure 8d illustrates the point-wise STDev of
the 70,000 samples. Similar to the result of traveltime tomogra-
phy, we can observe high STDevs at boundaries of layers and
low STDevs inside layers.
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(c) CFWI
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Figure 8: (a) True model for FWI. (b) Result of the conventional
FWI (CFWI). (c) MAP of the statistical inversion. (d) STDev.

CONCLUSIONS
We present a quantitative measure to evaluate the quality of the
recently developed deep generator prior for statistical seismic
inverse problems. The proposed quality control measure con-
siders both model errors in the original image domain and the
`2-norm of the corresponding latent vector. Numerical exam-
ples illustrate that a good prior generator in the sense of the
proposed measure is able to produce better inversion results
when contrasted with a prior that is not carefully chosen. Al-
though we use testing models to evaluate the generators, for
situations that testing models are not available, we can lever-
age unused validation models as an alternative to evaluate the
learned generators.
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