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Summary 
 
In many oil/gas fields and hydrofracking processes induced 
earthquakes result from fluid extraction or injection. The 
locations and source mechanisms of these earthquakes 
provide valuable information about the reservoirs. Analysis 
of induced seismic events has mostly assumed a double-
couple source mechanism. However, recent studies have 
shown a non-negligible percentage of non-double-couple 
components of source moment tensors in hydraulic 
fracturing events. Without uncertainty quantification of the 
moment tensor solution, it is difficult to determine the 
reliability of these source models. This study develops a 
Bayesian method to perform waveform-based full moment 
tensor inversion and uncertainty quantification for the 
induced seismic events. We conduct tests with synthetic 
events to validate the method, and then apply our Bayesian 
inversion approach to real induced seismicity events. 
 
Introduction 
 
Induced micro-earthquakes happen widely in conventional 
and unconventional oil/gas fields. Induced seismicity study 
is of great importance in monitoring and understanding the 
processes of hydraulic fracturing, fluid injection and oil/gas 
extraction (Maxwell et al., 2014; Shapiro, 2015). Source 
mechanism inversion is one of the main areas of the induced 
seismicity studies. The determination of source mechanisms 
of induced earthquakes can give the stress and fault 
orientation in the field (Vavryčuk, 2014).  
 
Many studies have implemented the inversion of the full 
moment tensor by the least-squares (LSQ) method and the 
regularized LSQ method (Sipkin, 1982; Šílený, 1992, 1996). 
However, LSQ methods have disadvantages in estimating 
and interpreting the uncertainty of the moment tensor 
solutions, since the LSQ methods only search for the best 
moment tensor solution and do not naturally yield 
probability distributions on the solution. An important 
question for full moment tensor inversion is whether the 
non-DC components are real. Some research has applied an 
F-test to check the significance of the non-DC components 
(Templeton, 2006, Šílený, 2009, Horalek, 2010, Nayak, 
2014). LSQ methods do allow a limited uncertainty 
quantification, based on the Hessian of the misfit function 
near the LSQ point estimate. But this is only a local and 
linearized estimate of uncertainty, and can be difficult to 
interpret. Alternatively, to address the uncertainties of 
moment tensors resulting from the data noise or imperfect 
station coverage, many LSQ-based moment tensor inversion 

studies have applied resampling methods to the data, such as 
Monte Carlo noise realization methods and jackknife tests 
(Šílený, 2009; Stierle, 2014a,b). 
 
Compared to LSQ methods, Bayesian inversion methods 
naturally quantify the uncertainty in model parameters by 
characterizing a posterior probability distribution over the 
parameter space (Tarantola, 2005; Kaipio, 2006; Stuart 
2010). Some studies have conducted Bayesian moment 
tensor inversion for moderate and large earthquakes.  
Duputel (2012) introduced a Bayesian moment tensor 
inversion method to estimate the uncertainties of source 
mechanisms for large earthquakes (Mw ≥ 6.0) from a global 
seismic network. That study did not determine the 
uncertainty of seismic locations jointly with the moment 
tensor. Stähler et al. (2014, 2016) presented a detailed study 
of probabilistic moment tensor and depth inversion from P 
and S-waveforms, as well as error modeling and station 
covariances during seismic source inversion. A recent paper 
by Mustać 2016, has developed a Bayesian full moment 
tensor inversion for a moderate-size earthquake with a well-
studied source mechanism using a regional seismic network. 
In that research, the uncertainties of both the seismic location 
and the moment tensor have been studied by implementing 
an outer Markov chain to sample the location parameters, 
and an inner chain to sample the moment tensor parameters.  
 
In this study, we introduce a waveform-based Bayesian full 
moment tensor inversion method with the consideration of 
uncertainties from both the location and velocity model. 
Both the uncertainties of seismic moment tensor and location 
are analyzed. Unlike the Bayesian method implemented by 
Mustać (2016), we sample the source location, velocity 
model and the moment tensor parameters using a single 
Markov chain; this approach reduces computational cost and 
provides more accurate uncertainty estimates, particularly 
for the source location. Moreover, we use the conditionally 
Gaussian structure of the parameter posterior to solve 
portions of the inverse problem analytically, reducing the 
dimension of the sampling problem and allowing the impact 
of source location uncertainty on moment tensor uncertainty 
to be explicitly quantified. We first validate the method 
using synthetic data before applying this full moment tensor 
inversion method to a selected induced event in an oil/gas 
field in Oman (Figure 1). The seismicity of this field and 
source mechanisms of events using DC assumptions have 
been studied extensively (Sarkar, 2008; Li et al., 2011a, b). 
To better quantify the uncertainties, we use the newly 
developed waveform-based Bayesian method for full 
moment tensor inversion and uncertainty quantification. 
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Bayesian Inversion Method and Synthetic Tests 
 
Before the Bayesian inversion, we first construct a Green’s 
function library, and calculate the synthetic seismograms for 
a point moment tensor source using the discrete wavenumber 
integration method (Bouchon, 1981). The observed 
seismogram 𝑣"# of the ith component at the nth geophone of 
location 𝑥%# is modeled by 

𝒘𝒊
𝒏 𝒙𝒓𝒏, 𝒙𝒔, 𝑡 = 𝑴𝒋𝒌𝑮𝒊𝒋,𝒌 𝒙𝒓𝒏, 𝒙𝒔, 𝒗, 𝑡 ∗ 𝑠 𝑡
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where 𝑮𝒊𝒋,𝒌 𝒙𝒓𝒏, 𝒙𝒔, 𝑡  is the spatial derivative of the Green’s 
function at the nth geophone of the location 𝒙𝒓𝒏 due to a point 
moment tensor source of the location 𝒙𝒔,	𝒗 is the 1-D 
velocity model, 𝑠 𝑡  is the source time function and 𝑒"# 𝑡  is 
the noise perturbation of ith component at the nth geophone. 
Since 𝑴𝒋𝒌 is a symmetric matrix, we can simplify 𝑚:7 to a 
vector 𝑚 of six elementary moment tensor parameters, i.e., 
𝑚9 = 𝑀99,𝑚D = 𝑀DD,𝑚6 = 𝑀66,𝑚E = 𝑀9D,𝑚F = 𝑀9D,
𝑚G = 𝑀D6. Then Equation 1 is written as  

𝒅 = 𝑮 𝒙, 𝒗 𝒎 + 𝒆																														 2                             
where 𝒙 denotes the source location 𝒙𝒔 in Equation 1, 𝒅 is 
the catenation of all the waveform vector 𝒘𝒊

𝒏, 𝑮 𝒙  is the 
catenation of all the synthetic seismograms of six elementary 
moment tensor parameters, and 𝒆 is the catenation of all the 
noise vectors. The objective of the Bayesian inversion is to 

predict parameters 𝒎 and 𝒙 in Equation 1 and quantify their 
uncertainties based on the waveform 𝒅. 
 
We apply the Bayesian rule to the parameter 𝒎 and 𝒙 given 
waveform data 𝒅 

𝑃 𝒎, 𝒙, 𝒗 𝒅 =
𝑃(𝑑|𝒎, 𝒙, 𝒗)𝜋O 𝒎 𝜋O 𝒙 𝜋O 𝒗

𝑃 𝒅
													(3) 

 
where 𝜋O 𝒎  and 𝜋O 𝒙  are the prior probability density 
functions of 𝒎 and 𝒙, 𝑃	(𝑑|𝒎, 𝒙, 𝒗) is the likelihood 
function, 𝑃 𝒅  is the evidence (or marginal likelihood), and 
𝑃 𝒎, 𝒙, 𝒗 𝒅  is the posterior probability density function.  
 
We assume the uniform distribution assumptions for 𝜋O 𝒎  
and 𝜋O 𝒙 , and the Gaussian noise assumption for the data 
noise 𝒆 

𝒆 ∼ 𝑵(0, 𝜮𝒆),                                 (4) 
where 𝜮𝒆 is the block-diagonal matrix with the noise 
variance of a particular component of seismograms 𝜎"# D 
as the diagonal elements of the block related to that seismic 
component. The likelihood function can be presented as 

𝑃 𝑑 𝒎, 𝒙, 𝒗

=
1

	 2𝜋 V 𝛴X
	exp −

1
2
𝒅 − 𝑮 𝒙, 𝒗 𝒎 ]𝜮𝒆^𝟏 𝒅

− 𝑮 𝒙, 𝒗 𝒎 																																										(5) 
where N is the total number of data samples used for 
inversion. With the prior and likelihood functions, we can 
obtain the joint posterior distribution of 𝑴 and 𝒙 

𝑃 𝒎, 𝒙, 𝒗 𝒅 	

=
𝑐

	 2𝜋 V 𝛴X
	exp −

1
2
𝒅 − 𝑮 𝒙, 𝒗 𝒎 ]𝜮𝒆^𝟏 𝒅

− 𝑮 𝒙, 𝒗 𝒎 																																										(6) 
where 𝑐 is a normalization constant. 
 
The general method for posterior sampling 𝒎, 𝒙 and 𝒗 is the 
Markov Chain Monte Carlo (MCMC) sampling method. The 
Metropolis-Hasting algorithm (Metropolis et al. 1953; 
Hastings 1970) is used to update the model parameters 
through the MCMC chain. Although we have the joint 
posterior function of 𝒎, 𝒙, and 𝒗 - 𝑃 𝒎, 𝒙, 𝒗 𝒅  - based on 
Equation 6, the linear dependence on 𝒎 and nonlinear 
dependence on 𝒙 and 𝒗 of the modeling waveforms 𝑮 𝒙, 𝒗  
result in a complex joint dependence of 𝑃 𝒎, 𝒙, 𝒗 𝒅  on	𝒎, 
𝒙, and 𝒗. We can hardly sample 𝒎, 𝒙 and 𝒗 simultaneously. 
We try the following approach to solve this problem. 
 
We construct three MCMC chains for 𝒎, 𝒙, and 𝒗. We first 
sample both 𝒙, and 𝒗 based the marginal posterior 
probability distribution 𝑃(𝒙, 𝒗|𝒅), which can be analytically 
obtained by the integral of Equation (6) for all the 𝒎. For the 
MCMC chain for 𝒗, each 𝒗 is proposed uniformly from a 
pool of velocity models. In this paper, we generate thousands 

 

 
 
Figure 1: Left: Map view and side view of the stations and located 
events for the near-surface network (Sarkar 2008; Li et al., 2011a, 
b). The red dots denote the location of the detected events, and the 
green triangles show the location of the stations. The black lines are 
the identified faults. The green triangles (VA11, VA21, VA31, 
VA41, and VA51) are the five near-surface stations. These stations 
are located in shallow boreholes 150 m below the surface. Right: 
Map view and side view of the spatial distribution of the 
microseismic events on the left. Our synthetic and selected real data 
are from one of the densest blocks along the fault. 
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of velocity models by the random Gaussian perturbation of 
the initial velocity model from well logs. For the MCMC 
chain for 𝒙, each 𝒙 is proposed by a random walk from the 
previous step. An adaptive metropolis (AM) Markov Chain 
Monte Carlo (MCMC) method (Haario et al. 2001) is used. 
The AM scheme adjusts the covariance matrix of x every 𝑛O 
steps through the MCMC chain based on all the previous 
samples of 𝒙 
 

𝑪#e = 𝑠f"g𝑪𝒐𝒗 𝑥O, … , 𝑥#e + 𝜖O𝑰f"g												(10) 
 
where 𝑪#e	is the updated covariance matrix at step 𝑛O, 𝜖O >
0 which is a constant to make 𝑪#e	positive-definite, 𝑑𝑖𝑚 =
3 for 𝒙, and 𝑠f"g = 2.42/𝑑𝑖𝑚. For the MCMC chain of 𝒎, 
we implement the Gibbs sampling based on marginal-then-
conditional 𝑃 𝒎 𝒅, 𝒙∗, 𝒗∗  where 𝒙∗ and 𝒗∗ are given. 
  
𝑃 𝒎 𝒅, 𝒙∗, 𝒗∗ ∼ 𝑵 𝝁𝒎 𝒅, 𝒙∗, 𝒗∗ , 𝜮𝒎 𝒅, 𝒙∗, 𝒗∗ , (7) 
𝝁𝒎 𝒅, 𝒙∗, 𝒗∗ = 𝑮𝑻 𝒙∗, 𝒗∗ 𝑮 𝒙∗, 𝒗∗ ^𝟏𝑮𝑻 𝒙∗, 𝒗∗ 𝒅,			(8) 
𝜮𝒎 𝒅, 𝒙∗, 𝒗∗ = 𝜮𝒎𝟎 + 𝑮𝑻 𝒙∗, 𝒗∗ 𝜮𝒆𝑮(𝒙∗, 𝒗∗) ^𝟏,									(9) 
 
where 𝜮𝑴𝟎  is the covariance matrix of M from the prior 
information of 𝒎. The three MCMC chains are serially 
catenated, which means for each MCMC step we Gibbs 
update 𝒎 first, and then update 𝒙 and 𝒗. The uncertainties 
of 𝒎, 𝒙, and 𝒗 are quantified by the mean and covariance of 
posterior sampling from the three MCMC chains. 
 
To validate our method, we first applied our full waveform 
inversion method to the synthetic data. The configuration of 
the seismic source and stations was shown in Figure 2. The 
synthetic source is located at 𝒙 = 	 [6.4, 5.4, 1.0] km. The 
source mechanism was set Strike = 50°, Dip = 40°, Rake = 
280°, DC% = 61%, CLVD% = 17%, ISO = 21%, α = 10°, 𝑘 
= 1.0 (𝑘 = 𝜆/𝜇 where 𝜆 and 𝜇 are Lamé parameters). A layer 
velocity model was used in the synthetic tests (Figure 2, 
lower right). A 10% Gaussian noise was added to the 
synthetic data.  
 
We first generate 1000 velocity models by 1% Gaussian 
perturbation of the initial velocity model. We show the log 
marginal posterior probability distribution log 𝑃(𝒙𝒊, 𝒗𝒋|𝒅) in 
Figure 3a), where i (=1, 2, …, 27) and j (=1, 2, …, 1000) are 
indexes for location and velocity in their corresponding 
pools, where the location and velocity are proposed. The 
MCMC chains for moment tensor, location, and velocity are 
shown in Figure 3b)-d). Note that to show the upper bounds 
of the uncertainties here, we assume the noise standard 
deviation to be 100% the maximum amplitude of each 
waveform. However, Even with this high noise assumption, 
the moment tensor, location, and velocity parameters are 
well recovered by this method. 
 
 

 
 
 
 
 
 

a) b)  

c) d)  
 

Figure 3: a): The normalized analytically-obtained log marginal 
lilelyhood 𝑃(𝒙𝒊, 𝒗𝒋|𝒅); b): The MCMC chain for six moment tensor 
parameters; c) The MCMC chain for three location parameters and 
their probability distributon; d) The MCMC chain for velocity 
model index j. 

 
 

 
 

Figure 2: The configuration of source and stations of our synthetic 
data. Left: The locations of the source and the stations. The red star 
denotes the source, the green triangles denote the stations. We use 
the red lines to mark stations with the same x, y coordinates. Right: 
The beach ball on the top right shows the mechanism of the 
synthetic source. The green triangles denote the projection of the 5 
stations on the source focal plane and the black dashed curve shows 
the projection of fault planes. The velocity model is shown at the 
bottom right. 
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Results for real data 
 
The field seismicity data are from the surface monitoring 
networks (Figure 1) in an oil and gas field in Oman. For the 
surface monitoring network, five surface stations, 
instrumented with SM-6B geophones, have been set up since 
1999. The data used in the studies consist of 800 events 
located by the surface. This field is dominated by two fault 
systems – the northeast-southwest trending main faults and 
northwest-southeast trending auxiliary system.  
 
We selected 1 event with high signal noise ratio from the 
surface monitoring network. The Bayesian inferred source 
mechanism and location with the uncertainties are shown in 
Figure 4. For this real data, we only implement the Bayesian 
inversion of moment tensor inversion with the consideration 
for location. However, based on the synthetic tests. We 
expect that the inclusion of velocity model uncertainties 
broadens the uncertainties of the both moment tensor and 
location solutions and provide more realistic uncertainty 
bounds. 
 
Conclusion 
 
The Bayesian moment tensor inversion method works well 
for recovering the source mechanisms and location from the 
seismograms; this is validated by our synthetic study. 
Running a single Markov chain with our marginal-then-
conditional sampling approach significantly reduced the 
dimension of the sampling problem and its computational 
costs.  In addition, the Bayesian method naturally lets us 
extract the uncertainties of the source parameters and 
location from the posterior distributions of these parameters.  
 
Based on the synthetic simulation and the study of an 
induced seismic event, we can state that the uncertainty 
quantification of full moment tensor solutions is a powerful 
tool to estimate how reliable the source mechanism model 
is. 
 
This study also includes the uncertainty of the velocity 
model. The inclusion of velocity model uncertainties 
broadens the uncertainties of the both moment tensor and 
location solutions and provide more realistic uncertainty 
bounds. 
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Figure 4: Top: The MCMC chanins for x and the resultant 
probability distribution for x. Bottom: The focal plane projection of 
the source mechanism. The dashed line shows the mean value of the 
fault plane solutions. The green triangles denote the five stations. 
The green region shows the uncertainty of the fault plane solutions 
and the gray dots and crosses show the tensile and compressional 
stress from marginal-then-conditional sampling of m. The 
comparison of the mean posterior predicted (red) and real (blue) data 
for the separated P- and S-wave segments. The purple shading areas 
show the 104 posterior predicted waveforms. The mean and range of 
the variance reduction (VR) for each station is shown in the figure.  
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