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Summary 
 
Just like linguists decode what human beings say, 
seismologists decipher what faults or fractures say. 
Fracturing of rock samples in laboratory generates acoustic 
emission (AE) – elastic energy related to very small 
“earthquakes". Acoustic emissions are of great importance 
in studying the fracturing mechanics because in laboratory 
experiments we are more informative about the stress 
conditions, the rock properties, and the fault plane 
geometry during the fracturing process. Different types of 
fractures, e.g. hydraulic fractures, stick-slip fractures, and 
micro cracks, may happen together (Figure 1) in a small 
rock sample in laboratory. Efficient methods to analyze AE 
signals are crucial to characterize fracture mechanisms 
processes and distinguish different fracturing processes. In 
this paper, we hear what fractures say be both the AE and 
audio recording data due to the rupture experiment of a pre-
existing fracture in a PMMA cylindrical sample. 
Traditional seismic source location and moment tensor 
inversion and speech recognition methods are used to 
characterize the fracture properties. 
 
Introduction 
 
The history of acoustic emission goes back to the middle of 
the 20th century, before the terminology AE" was created. 
Obert and Duvall (1942) first detected small noise emitted 
from rock under compression and attributed these signals to 
microfractures in the rock. Kaiser (1950) recorded signals 
from the tensile specimens of metallic materials. Later, 
Schoeld (1961) used the terminology AE in his work. 
 
Since the 1960's, much subsequent work has contributed to 
the development of AE techniques and applied the AE 
techniques to diverse engineering and scientific areas 
(Drouillard and Laner, 1978; Drouillard, 1987, 1996; 
Grosse and Ohtsu, 2008). 
 
During the past 50 years, fracture characterization has 
become one of the most important application areas of AE 
techniques. Many early studies from 1960's to 
1970's have used AE techniques to investigate fracturing 
and deformation processes of rocks (Savage and Mansinha, 
1963; Scholz, 1967, 1968a,b; Lockner and Byerlee, 1977). 
Savage and Mansinha (1963) studied the radiation pattern 
of AE due to a tensile failure in a 2-D glass plate. Scholz 
(1968b) determined the microfracture frequencies by AE 
event detection, and AE was also located in space by 

Scholz (1968a) and found to locate fractures during the 
compression of granite. Lockner and Byerlee (1977) 
published the pioneering work of locate hydraulic fractures 
using AE. Since this early start of the laboratory study of 
seismic processes, much work has been done to learn the 
slip processes of tectonic earthquakes using the laboratory 
analog fracturing process, which was detected by AE (W 
Goebel et al., 2013; Kwiatek et al., 2014). 
 
Recently, with the increasing interest in the hydraulic 
fracturing in unconventional oil/gas fields, AE-based 
laboratory hydraulic fracturing studies have drawn new 
attention in both academia and industry. Stanchits et al. 
(2011) studied the fracturing of porous rock induced by 
fluid injection. Ishida et al. (2012) injected supercritical 
liquid CO2 into a borehole inside rock samples and 
monitored the AE due to hydraulic fracturing. Fu et al. 
(2015) conducted an experimental study on the interaction 
between hydraulic fractures and partially-cemented natural 
fractures. Hampton et al. (2015) investigated the fracture 
dimension when the laboratory hydraulic fracture interacted 
with a natural discontinuity. Goodfellow et al. (2015) 
studied the hydraulic fracture energy budget from the 
laboratory AE study. 
 
Efficient and reliable detection, location, and source 
analysis methods for AE are crucial to produce fast and 
accurate results. The similarity of AE and earthquakes 
suggests it a possible method to study earthquake 
mechanism (Scholz, 1968a). Also, methods developed in 
modern seismology can be used to improve the AE 
analysis. For event detection, Swindell and Snell (1977) 
developed a processor automatic signal detection system. 
McEvilly and Majer (1982) introduced an automated 
seismic processor for microearthquake networks. Earle and 
Shearer (1994) used an automaticpicking algorithm to 
characterize global seismograms. Maeda (1985) suggested 
a method for reading and checking phase times in an auto-
processing system of seismic wave data. Kao and Shan 
(2004) introduced the source-scanning algorithm to map 
the distribution of seismic sources in time and space. Kurz 
et al. (2005) summarized the strategies for reliable 
automatic onset time picking of AE. All the algorithms in 
that paper originated from seismic event detection. 
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For earthquake location, Lomax et al. (2000) developed a 
Bayesian location algorithm to determine the location, as 
well as the uncertainties. A double difference location 
algorithm was introduced to mitigate the effects of an 
inaccurate velocity model on location and improve the 
accuracy of the relative location (Waldhauser and 
Ellsworth, 2000). Recent studies for microseismicity and 
tremor earthquakes have produced more ecient location 
algorithms dealing with a large data set with low signal-to-
noise ratio. Zhang et al. (2014) introduced a new method 
for earthquake depth determination by stacking multiple-
station autocorrelograms. Zhang and Wen (2015) suggested 
an effective method for small event detection and location. 
Grigoli et al. (2013) developed an automated seismic event 
location by travel-time stacking. Frank and Shapiro (2014) 
introduced an automatic detection of low-frequency 
earthquakes (LFEs) based on a beamformed network 
response location. 
 
For the AE source analysis, the most common method used 
the first-P polarity and the moment tensor inversion method 
using the first-P amplitude (Pettitt, 1998; Graham et al., 
2010). Although the first-P amplitude moment tensor 
inversion methods are also used in seismology, many 
studies of microseismicity used the waveform-based 
moment tensor inversion method to determine the source 
mechanism (Li et al., 2011 a,b; Song and Toksöz, 2011; 
Gu, 2016). The goal of this chapter is to characterize 
fractures in laboratory-scale rock samples (cm) using the 
analysis methods from seismology. In this study, I 
implemented several event detection, location, and moment 
tensor inversion algorithms to the AE data from the 
fracturing experiment of Berea sandstone. 
 
In addition to these seismic, nowadays many developed 
speech recognition algorithms (e.g., siri in your iphone) 

also provide us more efficient ways to characterize AE 
signals and infer the mechanisms of fractures. In this paper, 
we show the application of segmental dynamic time 
warping (S-DTW) algorithm to AE data. The S-DTW 
algorithm has been used frequently in unsupervised speech 
pattern recognition (Park and Glass 2005, 2008; Jansen 
2010).  
 
Laboratory fracturing 
 
The AE data are collected from the newly-built AutoLab 
1500 laboratory system and the National Instrument (NI) 
data acquisition system at the rock mechanics lab at MIT 
(Figure 2).  
 
The pressure vessel is divided into two chambers separated 
by a moveable piston (Figure 2c). The specimen resides in 
the lower pressure chamber, which replicates the 
overburden pressure. The higher pressure in the upper 
chamber moves the piston into contact with the sample 
assembly. When the pressure in the upper chamber is 
greater than that in the lower chamber, a directional force is 
applied to the specimen. 
 
The piezoelectric (PZT) sensors are attached to the rock 
sample, and connected to the NI data acquisition systems to 
collect AE data. The dominant response frequency range of 
the PZT crystal is between 300 kHz to 1 MHz. 
 

 
Figure 1:  Top: The schematic of different fracture types in a 
laboratory core sample. 
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Figure 2:  The schematic of the experimental system. a) The 
AutoLab 1500 laboratory system (New England 
Research:AutoLab 1500 Instruction Manual); b) The photo of the 
pressure vessel taken in the rock mechanics lab at MIT; c) The 
schematic of the pressure vessel (New England Research: 
AutoLab 1500 Instruction Manual). d) The schematic of the 
cylindrical rock sample. The red circles show the position of the 
sensors on the surface of the cylinder. The sensor is connected to 
the NI acquisition system to collect the AE signals. 
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The AE data used in this paper were from the rupture of 
pre-existing fracture in a PMMA cylinder sample. The 
sample was PMMA machined to a cylinder with the 
diameter of 38.10 mm and length of 77.47 mm. The P 
velocity is 2770 m/s and the S is 1395 m/s. Eight PZT 
sensors were placed over the surface of the cylinder. The 
distribution of the position of sensors is shown in Figure 3. 
PZT sensors are always suffered from the limited frequency 
bands. The confining pressure was 4 MPa, and the 
differential stress increased from 10 MPa until the fracture 
began to slip. We started the AE acquisition when the 
fracture began to slip. The sound from the slip can also be 
heard by human beings. In this paper, we also audio 
recorded the sound during the fracture rupture process by a 
sampling rate of 48kHz. 

 
Method 
 
The processing of the AE data implemented in this paper 
includes automatic event detection, location, and moment 
tensor inversion. We use the STA/LTA algorithm to detect 
events from continuous AE recording. The simplest grid 
search algorithm is used to locate AE events. The P-
amplitude based moment tensor inversion (FMTI) uses 
simplified Green's function to generate the forward Green's 

functions of each moment elements. This simplification 
assumes a homogenous and isotropic media in the space 
where the elastic waves propagate. The data for the 
inversion are the amplitude of the P waves. 
 
We also applied the spectrum analysis to the audio 
recording of laboratory fracturing sounds. A segmental 
dynamic time warping (S-DTW) algorithm is applied to the 
waveforms to recognize different sound source.  
 
Results 
 
The locations of AE events (Figure 4) almost delineate the 
pre-existing fracture with the strike of 45 degrees clockwise 
from the north and dip of 64 degrees. The source 
mechanism of one example event on the pre-existing fault 
plane also indicates a double-couple dominant normal fault.  
 
Because of high noise lever of several sensors and the 
limited sensor numbers, the locations of AEs do not exactly 
locate at the fracture plane. The increase of sensor 
sensitivity and numbers will improve the both location and 
source mechanism results. 
 
In addition to these regular seismic processing of AE data, 
we also apply the S-DTW algorithm to recognize the 
“speech” of a stick-slip normal fault in the sample. The 
acoustic dotplot for the audio recording show the similarity 
of signal segments during the whole recording. The 
brighter the dot color, the more similarity of the signal 
segmetns. The red line segmetns in the diagonal direction 
indicate the same signal perttern during the fracture 
ruptures. This result shows many sound segments of the 
fracture “speech” has the same patterns, which means 
repeated events with same mechnism occured during the 
ruptrue process. 
 
Conclusions 
 
Fracturing of rock samples in laboratory is useful to mimic 
different fracture processes, e.g., hydraulic fracturing and 
rupture of pre-existing faults. 
 
By interpreting the sound of fractures, either AEs or audio 
recording, we can decipher the mechanism of different 
fractures. Our work show both seismic and speech 
recognition methods for processing and interpreting the 
sound of fractures. 
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Figure 3:  Top: Sensor distribution for the PMMA stick-slip 
experiment. Bottom: The waveforms example from 8 channels. 
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Figure 5: Top: Audio recording during the rupture of the PMMA 
sample. Bottom: Acoustic dotplot for the audio recording. The 
brigter color show the lower distortion. The red lines show the 
segmetal DTW alingnment path. The red line segments in the 
diagonal direction show the two corresponding signal segmetns are 
similar. 

 
 

Figure 4: Top: The location of AE events (blue star) delineate the 
pre-existing practure inside the PMMA sample. Bottom: One source 
mechanism solution example for a selected event, which is marked 
as a big yellow star in the Top figure. The left panel shows 
comparison of the normalized observed (blue) and theoretical (red) 
first-P amplitude. The right panel shows the source mechanism 
solution presented by a top-view beach ball. The blue triangles show 
the projection of sensors on the focal planes. 


