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Abstract A detailed source and rupture process analyzes of the 10 June 2012 Ölüdeniz-

Fethiye (Dodecanese Islands; Mw 6.1) earthquake has been carried out using inversion of

both complex body waves and strong ground motion records. The rupture starting from the

hypocenter propagated gradually to the southwest. The main rupture is modeled by a main

asperity located 2–3 km beneath the hypocenter and two small asperities. The size of the

effective source area is about 24 9 12 km, the rupture duration was approximately 12 s

and the total seismic moment was estimated to be 1.955 9 1018 Nm. Continuation of

compression from the Hellenic Arc to the southeast part of Fethiye Gulf in the north

developed many active faults with complex geometries in the region. According to the

stress field obtained from the focal mechanism solutions of the 10 June 2012 Fethiye

(Dodecanese Islands; Mw 6.1) earthquake and M C 3.5 earthquakes which occurred in

Fethiye Gulf, the region between Fethiye Gulf and Rhodes Basin was deformed by the

NW–SE oriented extension. (T-r3) principal stress axis is dominant in the region. Addi-

tionally, NNW–SSE compression (P-r1) in further southwest of Fethiye Gulf contributed

to forming normal and strike-slip faults. Continuation of the NE–SW trending thrust faults

located from the west limb of the Hellenic Arc to the southeast of Fethiye Gulf caused

deformation in the region due to the seismotectonic model of the region. Both, normal

faulting related to the ‘‘pure extension’’ occurred after the compression, and strike-slip
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faulting associated with the ‘‘transtension’’, have been expressed by the spatial positions of

the principal stress axes in the study area.

Keywords Fethiye (Dodecanese Islands; Mw 6.1) earthquake � Focal mechanism � Stress

field � Extension � Transtension � Seismotectonic model

1 Introduction

The Anatolian plate, located in the Alpine orogenic belt, is one of the important regions in

terms of earthquake potential in the world (Dewey et al. 1973; Okay and Tüysüz 1999).

The closure of the north and south branches of the Tethys Ocean created the Alpine

orogenic belt (Şengör and Yılmaz 1981; Okay and Tüysüz 1999). Several continental scale

structural elements which deformed the Plio-Quaternary deposits after the Oligo-Miocene

and generated many historical and instrumental earthquakes developed in this region

(Şengör et al. 1985; Barka 1992). The collision of the Arabian and African plates with the

Anatolian plate in the east and subduction dominated the tectonic regime in the west and

created these major structural elements. One of these main structural elements is the Bitlis–

Zagros Suture Zone developed by the continental-continental collision, and the other one is

the Hellenic Arc created by the subduction in the Mediterranean Sea and southern Europe

(Fig. 1a, Jolivet and Faccenna 2000). The Anatolian plate currently rotates anticlockwise

towards the west within the tectonic framework of the region (Reilinger et al. 2006). The

movement of the African plate towards the north developed thrust faults along the Hellenic

Arc in the Mediterranean oceanic lithosphere and presently earthquakes occur on and

around these thrust faults (Soloviev et al. 2000; Papadopoulos 2001; Guidoboni and Co-

mastri 2005; Sbeinati et al. 2005; Ambraseys 2009; Guidoboni and Ebel 2009).

The continuation of the Hellenic Arc subduction created left lateral strike-slip faults

with normal component, such as Pliny and Strabo (Le Pichon et al. 1982; Chaumillon and

Mascle 1995). Correspondingly, the southern Aegean region confronted an extensional

tectonic regime after the development of the arc. The movement of the African oceanic

plate, which developed the Hellenic Arc, towards the north created the Isparta angle (IA)

which has east and west limbs on the continental plate in the north of Antalya (see Fig. 1a).

The sinistral NE–SW trending Fethiye–Burdur Fault Zone (FBFZ) with an extensional

component, located in the western limb of the Isparta Angle, is the continuation of the

NNE–SSW trending Pliny-Strabo fault system on land (Glover and Robertson 1998;

Bozkurt 2001). Very low frequency electromagnetic (VLF) study was carried out on the

FBFZ in a NW–SE direction. A fault zone reaching up to 40 m depth with high con-

ductivity was detected in NW–SE sections (Gürer et al. 2004). The study area extends from

Rhodes Island and vicinity in the southwest of the Isparta Angle to Fethiye Gulf northeast

of Rhodes Island (see Fig. 1a).

A moderate earthquake occurred on 10 June 2012 at 12:44 (UTC) in Fethiye Gulf

(Dodecanese Islands; Mw 6.1) in the southwest of Turkey. The hypocenter determined by

Kandilli Observatory and Earthquake Research Institute (KOERI) is located at 36.4542�N,

28.9047�E, in a depth of 19 km (KOERI 2012). The hypocenter is situated close to Fethiye

Gulf. A total number of seven persons were slightly injured, mainly by jumping from

buildings.

The purpose of this study is to evaluate the 10 June 2012 Fethiye Mw 6.1 earthquake

kinematically and seismotectonically. For this purpose, focal mechanism of the fault planes
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of Fethiye earthquake main shock and aftershocks were determined. Additionally, principal

stress axes directions of Fethiye earthquake were compared with the focal mechanisms of

other earthquakes of this area, and an approximation was made for the origin of the active

crust deformation in the region. Geographical distributions of the principal stress vectors

acquired from the previous earthquakes, the directions of the stresses based on recent GPS

velocities and the block movement vectors based on the magnetisms obtained from geo-

logical samples are comparatively evaluated in order to define kinematics and seismo-

tectonic features of the earthquake. The source parameters of the 18 earthquakes (11 of

them are aftershocks with 3.5\M\ 5.3) were derived by using the first motion polarities

of regional P waves collected by KOERI. Additionally, the focal mechanism of three

aftershocks reported by the Disaster and Emergency Management Presidency (DEMP) of

Turkey, two earthquakes reported by Kalafat et al. (2009), and six earthquakes reported by

Mediterranean Network (MEDNET) were used for the present-day stress analysis. Hence a

total number of 29 earthquakes including the main shock were used in the analysis. In

general, teleseismic body waves contain information on the overall moment release rate

and the depth range of the rupture area, while strong ground motion data contain most of

the information about detailed slip process in the source area. Therefore, to estimate a

detailed and stable source process, it is important to use both teleseismic body waves and

strong ground motion data (Yagi 2004). Thus the source rupture processes of Fethiye Mw

6.1 earthquake were analyzed using joint inversion of the teleseismic P- and SH-waves as

well as strong ground motion records collected by the Data Management Center of the

Incorporated Research Institutions for Seismology (IRIS-DMC) and DEMP stations

respectively.

2 Bathymetry and GPS

The western Anatolian, southern Aegean and western Mediterranean lithospheres move on

average 25 mm year-1 anticlockwise in relation to the Eurasian plate (Clarke et al. 1998;

McClusky et al. 2000; Ayhan et al. 2002; Meade et al. 2002). While the subduction rate is

18 mm year-1 along the Hellenic Arc in the south of the Mediterranean, the Pliny-Strabo

fault located in the north of the Hellenic Arc and Fethiye–Burdur fault yield a

10 mm year-1 movement defined by the Global Positioning System (GPS) (Reilinger et al.

2006). Ganas and Parsons (2009) indicate that the movement of the Aegean Plate towards

S35�W direction with 33 mm year-1 and the movement of the African (Nubian) Plate in

the south towards N10�W, direction with 5 mm year-1 characterize more likely a conti-

nental thrust rather than a subduction (see Fig. 1a). Kreemer and Chamot-Rooke (2004)

proposed two different strain models, A and B, based on GPS data. Model A is based on

matching the GPS vectors with the model velocities (Fig. 1b). In this model; the com-

pression vector magnitude decreases and becomes equal to the tension vector in the north

around Fethiye Gulf, while the compression vector around the Hellenic Arc in the western

Mediterranean Region is larger than the tension vector. Model B is constituted by adding

the constraints coming from the active faulting to the inversion of the GPS velocity data

set. In this model, the strikes of the mountain tracks were used to define the boundaries of

tectonic areas. The compression direction obtained from the strain ratios is compatible with

the striking of the seamount tracks. Additionally, the compression component of the re-

gional strain ratios in the south of the study area is greater than the extension component in

model B (Fig. 1c).
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The bathymetry contours range between 1000 and 3000 m in the vicinity and farther

south of the 10 June 2012 Fethiye Mw 6.1 earthquake epicenter. The bottom of the Rhodes

Basin further south is the deepest point (4000 m) in the bathymetry of the region

(Woodside et al. 2000; Kontogianni et al. 2002). The Rhodes Basin is located in the

southwest of the epicenter. Some important bathymetric features in the region are the Pliny

trench located 200 km south of the epicenter, the Strabo trench located 100 km southeast

of the Pliny trench, and the Anaximander and Anaxagoras seamounts located in the

southeast of the Rhodes Basin. The south border of the seamounts is associated with the

Hellenic Arc (Hall et al. 2009).

The compressional system that has developed the Hellenic Arc around Rhodes Island

and south of the island creates a rotation, especially in the northwest of the Mediterranean

lithosphere that has been the part of the African oceanic plate in the Neotectonic period

(Plio-Quaternary). When this rotation is correlated with the paleomagnetism declinations

determined from the samples taken from the Pliocene deposits in Rhodes Island (Fig. 1c).

It is deduced that the motion of the plate is mainly anticlockwise and partially clockwise

and the region is deformed by a complex compression and rotation (Duermeijer et al. 2000;

Van Hinsbergen et al. 2005; Piper et al. 2010).

3 Seismology

Numerous earthquakes with M C 3 have occurred along the Hellenic Arc in the

Mediterranean Sea (Yılmaztürk and Burton 1999; Pondrelli et al. 2002; Kreemer and

Chamot-Rooke 2004; Taymaz et al. 2004; Tan and Taymaz 2006; Yolsal-Çevikbilen and

Taymaz 2012; Irmak 2013). Also some moderate (4 B M B 6) and large (M C 6) earth-

quakes took place during the historical and instrumental periods in the north of the Hellenic

Arc, around Rhodes Island and in the vicinity of Fethiye Mw 6.1 earthquake (Papazachos

1996; Papazachos et al. 2000). The most important earthquakes were the 24 April 1957

(M 6.8) and 25 April 1957 (M 7.1) earthquakes with an average 40 km hypocenter depth

(Papazachos and Delibasis 1969; McKenzie 1972; Papazachos 1996; Ebeling et al. 2012).

Other earthquakes in this region have occurred in around 20 km hypocenter depths

(Kreemer and Chamot-Rooke 2004; Chamot-Rooke et al. 2005).

3.1 Source parameters of the earthquakes

It is essential to define the source parameters of the earthquakes accurately. Defining the

source parameters accurately allows us to understand the source mechanism of the

cFig. 1 a Map of the active faults that border all of the plates and the location of the study area (Ten Veen
2004; Ten Veen et al. 2009). SCT South Cretan Trough, ST Strabo Trench, PT Pliny Trench, RB Rhodes
Basin, AN Anaxagoras Mountain, AM Anaximander Mountain, FBFZ Fethiye–Burdur Fault Zone, MM
Menderes Massif, AG Antalya Gulf, AB Aksu Basin, EB Esençay Basin. If the Eurasian plate is assumed fix,
the Arabian and African Plates move relatively to the north, while the Anatolian plate moves with about
20 mm/year GPS velocity to the west, the study area is marked by a colored square. b The study area with
the epicenter of the 10 June 2012 Fethiye Mw 6.1 earthquake (red star) and the strain ratios according to
Model A of Kreemer and Chamot-Rooke (2004). c The epicenter of the earthquake with respect to the fixed
position of the Eurasian Plate and values of GPS velocity vectors (red arrows) and paleomagnetic
declination of the neotectonic units (green arrows) in the vicinity of the epicenter, Strain ratios according to
Model B of Kreemer and Chamot-Rooke (2004). The square indicates the study area. This was indicated in
the caption
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earthquake, the tectonic setting as well as the present-day stress situation better, to develop

an effective seismic hazard assessment. Therefore, as a first step, fault plane solutions were

calculated by utilizing P-wave polarities running the FOCMEC programs (Snoke et al.

1984) for the main shock and other 17 analyzed earthquakes (11 of them are aftershocks of

the 10 June 2012 Fethiye Mw 6.1 earthquake). All available polarities were carefully read

from national seismic stations as well as additional Greek and GEOFON stations, which

were used to obtain superior azimuthal coverage (Fig. 2a). The number of stations with
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unambiguous first arrival polarities varies from earthquake to earthquake, but, events with

fewer than 10 clear polarity readings were discarded, as were those with ambiguous

polarities. The take off angles were reported by Kandilli Observatory and Earthquake

Research Institute—National Earthquake Monitoring Center (KOERI-NEMC). The pos-

sible nodal planes which agree with the first motion polarities were searched, running the

FOCMEC program (Snoke et al. 1984). The P-waves were converted to displacement in

order to see the P-wave onsets better due to the low S/N ratio. Assuming the double-couple

model for the seismic point source, P-polarities on displacement seismograms were then

read. Polarity errors may be caused by low S/N ratio at stations near nodal planes, so called

‘mislocations’, or by structural heterogeneity, biasing calculation of azimuth and take off

angle and aliasing effects due to signal frequencies being higher than the sampling rate

(Scherbaum 1994). However, no polarity error was allowed in the solutions. Events with

multiple acceptable solutions, indicating different mechanisms, or with faulting parameters

uncertainties exceeding 20� were not reported in this study.

3.2 Slip distribution model of the main shock

Broadband data with vertical components of teleseismic P- and SH-waves were retrieved

from the Data Management Center of the Incorporated Research Institutions for Seis-

mology (IRIS), selecting 22 stations with epicentral distances between 30� and 100�

(Fig. 2b). The data windowed at 60 s starting at 10 s before P-wave arrival and were

integrated to displacement and band-pass filtered between 0.002 and 1.0 Hz. The data set

was obtained from the KOERI catalog (http://www.koeri.boun.edu.tr/scripts/

Sondepremler.asp). We also selected six components of strong motion data obtained

from two accelerometer stations of DEMP. The locations of these near-field stations are

shown in Fig. 2a. The acceleration data were windowed for 60 s, starting 10 s before the

first motion, band-passed between 0.01 and 0.5 Hz, and numerically integrated to ground

displacement with a sampling time of 0.5 s.

To estimate a detailed and stable source process, it is important to use both teleseismic

body waves and strong ground motion data. The international seismological centers de-

termined the hypocenter depth of the main shock on 10 June 2012 Fethiye earthquake to be

Fig. 2 a Map of teleseismic and b strong ground motion stations which were used in the joint inversion
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between 18 and 30 km. The accuracy of earthquake depth estimates increases with

availability of near-field stations. Therefore, two accelerometer stations of DEMP records

have been used in addition to broadband IRIS stations for obtaining depth and spatio-

temporal slip distribution of the earthquake. The first motion polarity solution of the main

shock represents the initial movement at the focus whereas the moment tensor solution

represents source parameters of the large slip area. However, the fault model based on the

moment tensor solution is more appropriate than the fault model estimated from the focal

mechanism by the initial P-wave polarity, since the focal mechanism by the P-wave

polarities represents only the initial rupture process during the main shock. Thus, the focal

mechanisms obtained by the moment tensor solution of the inversion method were used.

The centroid moment tensor solution of the earthquake reported by Harvard University

(HRV) is very similar to the first motion solution and the separation of the stations is more

realistic (Fig. 3). Therefore, we chose the centroid moment tensor solution of the earth-

quake reported by HRV. Indeed, several source inversion studies by using teleseismic data

assumed the fault models based on the moment tensor solutions (e.g. Kikuchi et al. 2000;

Yagi 2004; Yagi et al. 2004).

Applying a multi-time window inversion to the data, the spatio-temporal distributions of

fault slip have been estimated in previous studies (e.g. Yoshida 1992; Hartzell and Heaton

1983). We used an inversion code originally given by Yoshida et al. (1996) and later

developed by Yagi et al. (2003). A single fault plane was assumed for the waveform

analysis to obtain the slip distribution. The size of the fault plane was defined by

50 9 25 km and the rupture was assumed to start at the determined hypocenter of the main

shock. According to the right hand rule, the strike and dip direction were assumed to be

206� and 79� WSW respectively by HRV solution. We assumed that all points in a sub-

fault have the same Green’s function as the center of a sub-fault. We calculated the Green’s

functions for the teleseismic body waves using the method proposed by Kikuchi and

Kanamori (1991) for teleseismic body waveforms and using the discrete wave number

method developed by Kohketsu (1985) for strong ground motion. The sampling time of the

Green’s function was set at 0.5 s. The layered seismic velocity structures used in the

synthetics are given in Table 1. For a near-structure, we adopted the velocity model of

Akyol et al. (2006) with small modifications and with an additional layer of 1.5 km thick

water.

We solved the least squares problem with a positivity constraint on the model pa-

rameters using the non-negative least squares (NNLS) algorithm of Lawson and Hanson

(1974). For discretization in space, the fault plane was divided into 10 sub-faults in the

strike direction and into 5 sub-faults in the dip direction (making a total of 50 sub-faults

with an area of 5 9 5 km). The slip rate function of each sub-fault is expanded into a series

of two triangle functions with a rise time of 1.5 s. The rupture velocity of 3.0 km/s was

selected by trial and error; this determines the initiation time of the basis function at each

sub-fault. To suppress instability or excessive complexity, a smoothing constraint was

introduced to the differences in moment release.

4 Results

The results for the slip distribution obtained by the joint waveform inversion are shown in

Fig. 4. Figure 5 shows the observed and synthetic waveforms. Overall matching between

the synthetics and observed waveforms is quite good. The depth of the earthquake was

computed to be 24 km (Fig. 6). The total seismic moment is calculated to be
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1.955 9 1018 Nm (Mw 6.1), close to the seismic moment of 1.6 9 1018 Nm derived by

Deutsches GeoForschungsZentrum GFZ, Germany, 1.84 9 1018 Nm calculated by HRV

and 2.0 9 1018 Nm computed by United States Geological Survey (USGS) (http://www.

emsc-csem.org/Earthquake/mtfull.php?id=272709) (EMSC 2012). The size of the effective

Fig. 3 Representation of the focal mechanism solution of 10 June 2012 Fethiye Mw 6.1 earthquake
reported by different agencies using first motion polarities. The best match belongs to the HRV solution.
AUTH Aristotle University of Thessaloniki, COLUMBIA Columbia University, GFZ Deutsches
GeoForschungs Zentrum-Potsdam, HRV Harvard University, KOERI Kandilli Observatory and Earthquake
Research Institute, NOA National Observatory of Athens, UA University of Athens, USGS United States
Geological Survey. (http://www.emsc-csem.org/Earthquake/mtfull.php?id=272709) (EMSC 2012)
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source area was approximately 24 km long by 12 km wide. The duration of rupture was

about 12 s (Fig. 4b). The main rupture is located around the initial break point and the

maximum slip is 0.2 m if shear modulus is assumed to be 30 GPa (Fig. 4c). In the total slip

Table 1 Adopted and modified
layered crustal seismic velocity
structure (Akyol et al. 2006)

a, b = P and S wave velocities,
q = density, d = thickness

Structures

a (km/s) b (km/s) q (kg/m3) d (km)

Source region

1.50 0.00 1.00 9 103 1.5

5.21 3.01 2.65 5.0

6.00 3.47 2.87 10.0

6.25 3.61 2.95 6.0

6.43 3.72 3.15 8.0

7.80 4.51 3.30 –

Receiver region

5.57 3.36 2.65 15.0

6.50 3.74 2.87 18.0

8.10 4.68 3.30 –

Fig. 4 Mechanism and slip distribution of the 10 June 2012 Fethiye Mw 6.1 earthquake: a focal mechanism
(reported by HRV), b MRF Moment Rate Function, c slip distribution on the fault plane. Vectors indicate the
direction of motion. Star indicates hypocenter of the earthquake
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distribution, a large asperity area can be seen in 2–3 km beneath the hypocentral area of the

fault plane. The rupture is complex and gradually propagates from the hypocenter to

southwest. The areas of maximum moment release are located beneath the hypocenter and

about 15–20 km southwest of the hypocenter. The moment release and displacement rates

in the shallower parts of the fault plane are smaller than in the deeper parts of the fault

plane. Depth distributions of the study area earthquakes were also defined (Fig. 7b).

The north dipping fault plane was assumed to be the main plane in the focal mechanism

for defining the faulting mechanism in the study area. The north dipping main active

faulting in the northeast of Fethiye Gulf on shore served as a model for this assumption.

Additionally, as it is derivable from Fig. 1a, the faults in the region gained the left lateral

Fig. 5 Waveform fitting for joint inversion. 4801 and 4810 are strong ground motion records (NS North–
South, EW East–West and UD Vertical Component), others are teleseismic records (PZ: Vertical P and
SH:SH waves)
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component when the extension created by the subduction was accompanied by an anti-

clockwise rotation of the plate including of Fethiye Gulf. This faulting style was effective

in selecting the rupture plane for the main shock focal mechanism. Besides, in the in-

version analysis the fault plane with NE-SW strike yielded a smaller Root Mean Square

(RMS) error compared to the RMS error of the other fault plane.

4.1 Kinematic and present-day stress analysis

The principal stresses occurring during a fault plane rupturing or movement of blocks on a

slip plane, and stress ratio are referred to as r1 (maximum compression), r2 (intermediate

stress), and r3 (maximum tension) and R respectively (Delvaux et al. 1997; Yamaji 2000;

Angelier 2002). Kinematic features of the 10th June 2012 Fethiye earthquake source are

determined by using focal mechanisms obtained from the source parameters of 29 selected

earthquakes. 15 out of 29 earthquakes came from the data set-A zone and the rest of the

earthquakes came from the data set-B and set-C zones (Table 2). Along the 10 June 2012

Fethiye Mw 6.1 main shock and aftershocks (data set-A zone), earthquakes (data set-B, C)

of two different regions that are close to the data set-A zone were selected for the stress

analysis to analyze the active faulting. Thus, including the past earthquakes occurred

before the 10 June 2012 Fethiye Mw 6.1 earthquake in the data set-B and set-C zones could

help understanding the seismotectonic crust model better for the region. The stress analysis

of the region was performed by using the P- and T-axes obtained from the focal mechanism

solutions of the earthquakes by the WIN TENSOR software (Delvaux and Sperner 2003).

Types of the fault planes on which the 10 June 2012 earthquake and nearby earthquakes

occurred and the origin of deformation were determined on the basis of the positions of the

principal compression axis-pressure (r1, P) and principal tensional axis-tension (r3, T)

(Table 3). We constituted five earthquake data set zones from ‘‘A’’ to ‘‘E’’ to define the

regional stress distribution and to find a relationship among the active faults around Rhodes

Fig. 6 Source depth versus RMS graph. As depth of the earthquake we selected a value that coincides with
a minimum RMS value after computations
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Island and the FBFZ located in the northeast of Fethiye Gulf shown in Fig. 1a. The data

set-A zone, contains the main shock of Fethiye Mw 6.1 earthquake, numbered 1 along with

its aftershocks numbered from 2 to 12 and the earthquakes that occurred before Fethiye
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Mw 6.1 earthquake, numbered 21, 22 and 23. The data set-B zone includes the earthquakes

that located in the northeast and east of Rhodes Island, and the data set-C zone includes the

earthquakes located in the northwest of Rhodes Island. Additionally, we developed the data

set-D by merging the data sets-A, and -B, and the data set-E by merging the data sets A,

B and C in Fig. 7 to analyze the occurrence of the 10th June 2012 Fethiye Mw 6.1

earthquake better. The positions of P- and T-axes were defined from the focal mechanism

solutions of the 29 selected earthquakes including the main shock and aftershocks of

Fethiye earthquake (see Fig. 7). The focal mechanism solutions of the earthquakes that

occurred in the data set zones were evaluated with the WIN TENSOR software and rose

diagrams prepared by the plunges of P- and T-axes. In this way, the positions of the

principal stress axes were defined for each zone and the whole region (Fig. 8).

The stress field obtained through focal mechanism solutions of 15 earthquakes in the

data set-A zone yielded (r1): sub-horizontal, (r2): sub-vertical and (r3): sub-horizontal

(Fig. 8a). Evaluations of focal mechanisms of 14 earthquakes in the data set-B, and -

C zones resulted in (r1) and (r2): sub-vertical, (r3): horizontal (Fig. 8b, c). The stress

field obtained from the focal mechanism solutions of 22 earthquakes in the data set-

D zone resulted in (r1): sub-vertical, (r2): vertical and (r3): sub-horizontal (Fig. 8d). The

stress field for the data set-E zone including 29 earthquakes yielded (r1) and (r2): sub-

vertical, and (r3): horizontal (Fig. 8e). The most prominent result of the stress tensor

analyses carried out for each zone is that the r3 vector is more dominant than the r1

vector. Extension is dominant in the faulting of the zones including the main shock of

Fethiye Mw 6.1 earthquake, and other earthquakes. Additionally, strike-slip faulting

accompanies the extension. This outcome is supported by the stress state in Table 3. The

distributions of P- and T-axes were displayed on both pole point (X) and contour dia-

gram spheres by using the P–T dihedra method proposed by Angelier and Mechler

(1977) to detail the kinematic analyses in the five earthquake data set zones. The darkest

areas in the contour diagrams are the best possible variation range for direction and angle

values of the principal stress axes. The positions of the principal stress axes are com-

pared with the dark areas on the contour diagrams, and the directional effect interval of

each axis was defined for each zone. The directional effect intervals and strikes of P and

T-axes are compared with the rose diagrams (Fig. 9). It is understood from the contour

diagrams of the study area that the minimum compressional stress (r3) is closer to the

ideal darkest areas and the primary stress tensor in the faulting of the region. The

maximum principal compression stress (r1) with the strikes of P-axes, and the maximum

principal extension stress (r3) with the strikes of T-axes were compared for each dataset

zone. As a result, it was found out that all of the principal stress axes change in a certain

direction range (Table 4).

bFig. 7 a Focal mechanism solutions according to the international seismological centers. Besides the focal
mechanism solutions of the 10 June 2012 Fethiye Mw 6.1 earthquake main shock and after shocks,
bathymetry and active faults are shown (thrust and fold axes from Hall et al. 2009, faults located in Rhodes
Island are adapted from Leite and Mascle 1982; Mascle and Martin 1990; normal faults between Rhodes
Island and Fethiye Gulf are adapted based on the results of this study and from Hall et al. 2014). The focal
mechanism solutions for the earthquakes (M C 3.5) and others are plotted with blue and red beach balls
respectively. Closed polygons indicate the data set zones explained in the text. Distribution of the stress
fields obtained from the focal mechanism solutions are shown by arrows (maximum principal compressional
stress axis (r1) and tensional stress axis (r3) are shown with black and white arrows respectively) b Depth
distribution of earthquakes in the study area
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The average misfit angle, one of the parameters in the stress tensor analysis of the faults

in a region, was computed for each data set zone in the study area (see Table 3). The

uniformity of slickensides is evaluated by the misfit angle which is one of the stress

analysis components. Micheal (1991) estimated a 34� misfit angle in an area where

slickensides were homogenous and stated that the variations in the misfit angles cause

differentiation in stress state. The misfit angles of the data set-A and data set-C zones are

approximately equal, but the misfit angle of the data set-B is larger compared to the other

two data set zones. The variation in the misfit angle may be supportive evidence for the

extension accompanied with a strike-slip faulting. The focal mechanism solutions carried

out by the different international seismological centers for the main shock of Fethiye Mw

6.1 earthquake support the extensional and strike-slip faulting defined in Table 3.

5 Discussions

Previous researchers suggested different approaches to the seismotectonic regime in

Rhodes Island and vicinity, in a corridor among Rhodes Island and Fethiye Gulf and north

of Fethiye Gulf. The dominant active stress was indicated to be NW–SE extension ac-

companied by a left lateral stress based on the focal mechanism solutions in Rhodes Island

and vicinity (Kiratzi and Louvari 2003; Chamot-Rooke et al. 2005; Shaw and Jackson

2010). Almost all authors remarked a dominant NW–SE extension according to the focal

mechanism solutions, slickensides and slickenlines in the Holocene units in the FBFZ

(Yılmaztürk and Burton 1999; Ten Veen and Kleinspehn 2003; Kreemer and Chamot-

Rooke 2004; Verhaert et al. 2006; Alçiçek et al. 2006; Över et al. 2010). The focal

mechanism solution of the 12 May 1971 M 6.2 earthquake that occurred in the FBFZ

yielded normal faulting and NW–SE T- axis (Yılmaztürk and Burton 1999). One of the two

earthquakes (M C 5) that located in the south of Fethiye Gulf on 12 May 1971 presented a

strike slip focal mechanism with an extension component, but the other earthquake that

occurred at the same location and date indicated a thrust type focal mechanism. Both

earthquakes had NW–SE T- axis (Ebeling et al. 2012). Some studies explained the origin of

Table 3 Stress tensor results obtained from the focal mechanism solutions of the 29 earthquakes for each
data zone

Focal mechanisms
of data set no

r1

(Az�/
Pl�)

r2

(Az�/
Pl�)

r3

(Az�/
Pl�)

Stress
ratio (R)

Average misfit
angle (b)

Stress state

Data set-A 09/14 232/71 102/12 0.96 25.67 Extensional strike-slip
(NW–SE)

Data set-B 31/49 224/40 128/07 0.46 40.32 Oblique extensional
(NW–SE)

Data set-C 54/52 229/30 321/02 0.48 24.71 Pure extensional
(NW–SE)

Data set-D 15/21 222/67 109/10 0.85 36.73 Extensional strike-slip
(NW–SE)

Data set-E 14/42 222/44 118/14 0.85 40.20 Oblique extensional
(NW–SE)

r1, r2 and r3 are maximum, intermediate and minimum principal stress axes respectively and stress ratio is
(R) = (r2–r3)/(r1–r3)
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the extension as being related to the forearc development (Mascle and Martin 1990; Ten

Veen and Kleinspehn 2003). On the other hand, the Esençay basin located in the southeast

of Fethiye Gulf and the edge of the west limb of the Isparta angle was defined as forearc

(Ten Veen 2004). Hall et al. (2009) mapped the FBFZ left lateral strike slip fault with

thrust component. The distribution of the stress states in the northeast of Fethiye Gulf

varies with geologic age. The region was dominated by a NW–SE pure compression that

originated by the Isparta Angle in the Lower Miocene and a NW–SE extension that

followed after the crust thickening due to compression from the Pliocene to Recent (Över

et al. 2012). The NE–SW normal faults seen in the NW–SE seismic reflection sections

between Rhodes Island and Fethiye Gulf have been formed by the sinistral Pliny Strabo

Fault Zone (PSFZ) (Hall et al. 2014).

The influence zone (data set-A) of the 10 June 2012 Fethiye Mw 6.1 earthquake and the

origin of the active faults that created the stress field in the neighboring areas of Fethiye

earthquake could be explained in two ways based on the dominant extension accompanied

partially strike-slip component obtained from the focal mechanism solutions. The first

possible explanation is the existence of grifted normal faults with compressional tectonic

regime due to the Hellenic Arc and later normal faults that contributed to the forearc

development. The second possible explanation is sinistral and transtensional faults caused

by the subduction of the Hellenic Arc. To test these two opinions in this study, stress

distributions analyzed in the three main data zones and the two other combined data zones

were evaluated. The geometry of the northeastern extension of the Pliny and Strabo faults

reaching to the FBFZ was determined. Additionally, an effort was made to define con-

tinuation of the secondary thrust faults associated with the Hellenic Arc and the west limb

of the Isparta angle in the Mediterranean. The seismotectonic model of the region is

displayed by a block diagram (Fig. 10a). The principal maximum compression is promi-

nent in the NW–SE direction according to the strain distributions obtained from the GPS

data shown in Fig. 1b, c for the study area and vicinity. This situation is a result of the

anticlockwise rotational movement of the region between the east and southeast of Fethiye

Gulf (Kissel and Poisson 1986). Hall et al. (2009) mapped the active faults as NE–SW

thrust and sinistral strike slip, displayed in Fig. 1a, using the seismic reflection method in a

region from approximately 20 km of southeast data set-A zone and 40 km east and

southeast of Rhodes Island. The extension effects in the E–W direction according to the

focal mechanism solutions of the earthquakes are generated by the N–S trending normal

faults displayed in Fig. 1a between Crete and Rhodes Island located in the west limb of the

Hellenic–Cyprus Arc (Armijo et al. 1992; Kreemer and Chamot-Rooke 2004). Shaw and

Jackson (2010) defined normal faulting due to extensional stress from the focal mechanism

solutions of some earthquakes in a zone between the south of Rhodes Island and the

Hellenic Arc. The direction of extension mentioned in the previous studies is considered to

comply with the WNW–ESE extension obtained from the data set-A and set-D zones. The

extension in the data set-C zone is mainly NW–SE and pure. The stress parameters ob-

tained from the data set-E zone indicate that the upper crust is deformed by the active faults

for which extension component is dominant over sinistral component. As is understood

from Figs. 7 and 8, the maximum tensional–minimum compression stress axis (r3) vector

is prominent in the whole region. This extension indicates that the normal faults generate

the majority of the earthquakes, and sinistral strike slip accompanies normal faulting due to

the rotation around Fethiye Gulf. This explains why the transtensional stresses (i.e. those

related to strike slip faulting) and extensional stresses are grift in the region. The stress

field of the data set-B zone shows that the earthquakes mainly occur on the planes of

normal faults in this zone (see Fig. 8b). These normal faults are similar to the faults located
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on the edge of the forearc basin (RB) that developed following the thrust faulting. In other

words, the WNW–ESE oriented extension indicates that the FBFZ continues to the

northwestern edge of the Rhodes Basin as oblique (left lateral) normal faults in segment.

This evidence supports Kreemer and Chamot-Rooke (2004) (see Fig. 7). Besides, the

dominant strike direction of T-axes is NW–SE (see Fig. 9).

The orientation of the principal stress axis (r3) of the stress field created by the

earthquakes in the data set-B and data set-D zones supports the NW–SE dominant ex-

tension. The NE–SW normal faults border the Aksu Basin and the Antalya Gulf located

east and southeast of the study area and in the vicinity of the east limb of the Isparta angle,

which indicate the presence of extensional stress in this region. The Pliny and Strabo

trenches located around the Hellenic Arc are defined as transtensional areas of NE–SW

sinistral strike-slip faulting (Huguen et al. 2001).

The downthrown NNE–SSW trending normal faults that border the graben areas were

defined along the vicinity areas of Rhodes Island’s southeast coastline in north of the

Hellenic Arc (Lekkas et al. 2000; Titschack et al. 2013). The NW–SE trending extension in

the data set-C zone supports this hypothesis (see Fig. 8). Additionally, normal faults that

developed parallel to NE-SW reverse faults were mapped in Catalan Coastal Ranges of

Valencia-Spain located in the NW of the Mediterranean Sea (Baqués et al. 2009). This

structural pattern is similar to the fault geometries in the study area. The main shock and

aftershocks of the 10 June 2012 Fethiye Mw 6.1 earthquake occurred in a strike-slip

dominant tectonic setting (Görgün et al. 2014).

The origin of the deformation may be associated with the development of the Hellenic

Arc based on the tensional or compressional strike slip faulting obtained from the focal

mechanism solutions of the 10 June 2012 Fethiye Mw 6.1 earthquake by the international

seismology centers. This postulation is supported by the slip vectors of two different events

observed on the slip plane of Fethiye Mw 6.1 earthquake. Hall et al. (2009) indicated that

dominant compression around the southeast of the region could create small scale intra-

plate strike-slip faults. Additionally, the explicit strike-slip offset in the focal mechanism

solutions of the Fethiye Mw 6.1 earthquake and its aftershocks may be developed by the

rotational movement of the region (see Fig. 7). It is possible to explain the faults that

produce earthquakes in the study area by using the compressional arc seismotectonic

model, one of the forearc evolution models (Fig. 10a). When the region between Rhodes

Island and Fethiye Gulf is evaluated, several active faults which caused forearc develop-

ment (related to the Hellenic arc) can be explained by an extension after compression was

noticeable. The continuation of the NW–SE compression until today in the east and

southeast of the study area has led to a forearc origin bathymetry (the Rhodes Basin). The

NE–SW trending normal faulting mechanism which is the indication of the extensional

deformation, was created by the effect of compression in the deep section of the western

Mediterranean crust (Fig. 10b). Busby (2004) defined a similar tectonic evolution for the

Baja California, Mexico. Another similar forearc tectonic model, considered for the

Rhodes Basin in this study, is the development of the Plio-Quaternary Ionian forearc basins

associated with the subduction in the Ionian Sea south of Italy (Cavazza and Barone 2010).

The dominance of (T, r3) to (P, r1) determined by this study in the region could be

explained by not only a transtensional regime due to the sinistral strike slip faulting in the

bFig. 8 Positions of the principal stress axes obtained from focal mechanism solutions of the earthquakes in
the a data set-A, b data set-B, c data set-C, d data set-D, e data set-E zones in the lower hemisphere (left
panel), distributions of P- and T-axes (right panel) based on plunge values on the rose diagrams
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FBFZ but also an extensional regime due to compression. A dense seismic network with

broad band seismometers and seismic reflection could be used to resolve which tectonic

origin is dominant in the region.

bFig. 9 Contour, point of pole (X) (left panel) and rose diagrams according to strike of the P- and T axes
(right panel) obtained from the focal mechanism solutions of the earthquakes in the a data set-A, b data set-
B, c data set-C, d data set-D, e data set-E zones shown from left to right (equal area lower hemisphere are
used for the contour and (X) diagrams)

Table 4 The variation range of the compression (r1) and extension (r3) directions created by the P- and T-
axes obtained through the focal mechanisms of the study area earthquakes in Fig. 9 right panel

Data set no. Earthquake no. Focal mechanisms Orientation, Strike

P� axes T� axes P� axes, r1 T� axes, r3

Data set-A 1 167 76 N5–25E N65-85W

2 175 278

3 78 69

4 252 131

5 79 259

6 184 93

7 187 96

8 134 247

9 189 98

10 110 256

11 78 302

12 189 98

21 179 44

22 121 107

23 215 93

Data set-B 13 213 119 N5–35E N55–85W

15 95 327

16 308 128

17 24 171

18 108 288

19 187 278

20 73 212

Data set-C 14 263 167 N40–80E N10–40W

24 74 228

25 41 308

26 3 160

27 218 312

28 55 309

29 42 255

Data set-D N10–80E N30–80W

Data set-E N30–80E N50–60W
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Fig. 10 a Block diagram of the seismotectonic model of the region b I–II cross section (not to scale and
modified from Busby 2004) displaying the hypocenters of the 10 June 2012 Fethiye Mw 6.1 earthquake main
shock and other earthquakes with different focal mechanisms associated with the faults marked in red
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6 Conclusions

The inverted source-rupture model of the 10 June 2012 Fethiye Mw 6.1 earthquake indi-

cated that the rupture process is complex and the faulting has a main asperity and two small

asperities. The main asperity is located 2–3 km beneath the hypocenter with a maximum

slip of about 0.2 m. The rupture propagated to the southwest. The moment release and

displacement rates in the shallower parts of the fault plane are smaller than in the deeper

parts of the rupture plane. The effective source area is about 24 km long by 12 km width.

An oblique faulting associated with a NW–SE extension component that is more dominant

than the strike-slip component that was determined by the focal mechanism solutions of 10

June 2012 Fethiye Mw 6.1 earthquake main shock and aftershocks included in the data set-

A zone. The zone that includes Fethiye Mw 6.1 earthquake is a transition zone between

pure compression and extension, so earthquakes with all possible faulting types should be

expected to occur in this zone. It is understood that the FBFZ extends farther southeast as a

segment with normal faulting and the normal faults located at the edge of the Rhodes Basin

are parts of this system.

The seismicity in the region can be explained by the NW–SE trending normal faults

located in the shallow depths (B20 km) of the crust and the thrust faults (related to the

Hellenic Arc) in the deeper part (C20 km) of the crust. The extension occurred after the

compression in the southeast of Fethiye Gulf, contributed to forming of the NE-SW normal

faults similar to the forearc basin boundary faults. The compression which developed the

Hellenic Arc causes a movement to the southwest in the plate that contains the Fethiye

Gulf. Since the curvature of the arc to the north causes an anticlockwise rotation in the

Fethiye Gulf plate, the sinistral strike-slip component accompanies the stress distribution

of the region. However, the vertical displacement is greater than the horizontal (sinistral)

and creates oblique slip in the geometries of the faults that are capable of generating

earthquakes.
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talya (Taurides occidentales, Turquie). Comptes Rendus de I’Académie des Sciences de Paris
302:711–716

KOERI (2012) http://www.koeri.boun.edu.tr/sismo/indexeng.htm. Visited 19 June 2012
Kohketsu K (1985) The extended reflectivity method for synthetic near-field seismograms. J Phys Earth

33:121–131
Kontogianni VA, Tsoulos N, Stiros SC (2002) Coastal uplift, earthquakes and active faulting of Rhodes

Island (Aegean Arc): modeling based on geodetic inversion. Mar Geol 186:299–317
Kreemer C, Chamot-Rooke N (2004) Contemporary kinematics of the southern Aegean and the Mediter-

ranean Ridge. Geophys J Int 157:1377–1392. doi:10.1111/j.1365-246X.2004.02270.x
Lawson CH, Hanson RJ (1974) Solving least squares problems. Prentice-Hall, Englewood Cliffs
Le Pichon X, Nicolas L, Angelier J, Renard V (1982) Strain distribution over the east Mediterranean ridge: a

synthesis incorporating new Sea-Beam data. Tectonophysics 86:1–3, 243–255, 259–274
Leite O, Mascle J (1982) Geological structures on the south Cretan continental margin and Hellenic Trench

(eastern Mediterranean). Mar Geol 49:199–223
Lekkas E, Papanikolaou D, Sakellariou D (2000) Neotectonic map of Greece: Rhodos Sheet. Tectonic

Committee of the Geological Society of Greece, Athens
Mascle J, Martin L (1990) Shallow structure and recent evolution of the Aegean Sea; a synthesis based on

continuous reflection profiles. Mar Geol 94:271–299
McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K,

Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M,
Ouzonis A, Paradissis D, Peter Y, Prilepin M, Reilenger R, Sanli I, Seeger H, Tealeb A, Toksöz MN,
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