MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

Fracture deformation and its effects on flow - experiments and simulations

Rafael Villamor-Lora and Hao Kang

GRADUATE STUDENTS [CIVIL AND ENVIRONMENTAL ENGINEERING]

Supervised by Prof. Herbert Einstein.

Introduction

 σ_1, σ_2 = far-field stresses

Outline

Part A: Experimental Investigations

- ➤ Experimental setup
- ➤ Specimen design + fabrication
- In-situ aperture + concentration fields
- ➤ Flow measurements
- ➤ Flow and fracture deformation

Part B: Numerical simulations

- > Methodology
- ➤ Micro-indentation experiments
- ➤ Abaqus simulations

Conclusions

Part A:

Experimental Investigations

Part A: Experimental Setup

Part A: Specimen Design + Fabrication

<u>Workflow</u>

- ➤ Geometry control
- > Material properties

Part A: In-situ Aperture + Concentration Fields

Light Transmission Technique

Aperture Fields

Part A: In-situ Aperture + Concentration Fields

Light Transmission Technique

Concentration Fields

8

Part A: Flow measurements

Part A: Current work + next steps

Current work:

• Stress-dependent permeability relationship

Next steps:

- Linear-nonlinear flow transition
- Interplay between fracture geometry, flow and transport

Part B:

Numerical Simulations

Key motivation

Factors affecting aperture change:

Deng et al. (2015)

Dissolution

Pressure solution:

- The mechanical deformation (elasto-plastic defor. and creep) is significant, but it has not been accurately simulated.
- Start with elasto-plastic deformation of Musandam limestone fractures. Also working on the creep.

Overview of methodology

• Why choose micro-indentation data: similar size and stress states compared with fracture contacting asperities.

Micro-indentation experiments

Microscope image of indents

Force – indentation depth curves for four selected locations

ABAQUS simulation method for micro-indentation

Elastic parameters (from triaxial tests):

• E = 67 GPa, v = 0.30

Plastic model: Mises yielding model

- Reason: at indentation / fracture asperity scale, the yield strength is not strongly pressure-dependent.
 Difficult to converge in Coulomb.
- Choose yielding strength $\sigma_y = H / 3$, where H is the indentation hardness. H = 1680 MPa, so $\sigma_y = 560$ MPa.

Mesh and Mises stress distribution:

ABAQUS simulation results for micro-indentation

Vertical displacement:

Simulated force – depth curves:

14

15

12

13

ABAQUS simulation motivation for fracture surface asperity interaction

Reality:Question:Method:In real fracture surfaces,
multiple asperities with different
heights and shapes.Image: Method interaction
between different asperities?Image: Method interaction
heights and shapes.Image: Method interaction
between different asperities?

Multiple asperities:

Part B: Mechanical deformation simulation "III Set Laboratory

ABAQUS simulation methods for fracture surface asperity interaction

Overview: compare the indenter displacements under the same σ_1 (averaged compressive stress). Change the d / r, asperity shape, and No. of asperities.

Constitutive model: same as indentation simulation.

Summary:

Asperity shape	d / r ratios	No. of asperities
Circular	1.3, 1.6, and 2.0	1, 2, and 5
Rectangular	1.3, 1.6, and 2.0	1, 2, and 5

ABAQUS simulation results for fracture surface asperity interaction

 $\delta_{multiple\ asperities} - \delta_{single\ asperity}$

 $\delta_{single\,asperity}$

2 asperities (d / r is changed):

Note: *Difference percentage* =

Mises stress for circular shape when $\sigma_1 = 200$ MPa:

Mises stress for rectangular shape when $\sigma_1 = 200$ MPa:

When $\sigma_1 < 500$ MPa, plastic yielding is more significant in circular asperity.

ABAQUS simulation results for fracture surface asperity interaction

5 asperities (d / r is changed):

Circular shape, two versus five asperities:

d / r is also changed.

Simulation conclusions and next steps for fracture surface asperity interaction

Conclusion:

- Mises yielding gives reasonably good fit between indentation simulations and measurements.
- Plastic yielding reduces the difference percentage. The difference percentage for circular asperity is smaller than that of rectangular.
- When the number of asperities increases, the difference percentage of rectangular asperity increases much faster than that of circular asperity.

Next steps:

- Find suitable description of fracture surface with multiple asperities. Implement it in ABAQUS (or other code) and conduct simulation.
- Extend the simulation to creep.

Conclusion

- Flow experiments on a pressure-controlled Hele-Shaw cell
 - Develop a novel setup for flow and transport measurements
 - Direct observations of aperture fields under stressed conditions
- Numerical simulation
 - Mises yielding gives reasonably good fit between indentation simulations and measurements.
 - Plastic yielding reduces the difference percentage. The difference percentage for circular asperity is smaller than that of rectangular.

Back-up slides

Mesh for five asperities interaction

