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A B S T R A C T

We present Defmod, an open source (linear) finite element code that enables us to efficiently model the crustal
deformation due to (quasi-)static and dynamic loadings, poroelastic flow, viscoelastic flow and frictional fault
slip. Ali (2015) provides the original code introducing an implicit solver for (quasi-)static problem, and an
explicit solver for dynamic problem. The fault constraint is implemented via Lagrange Multiplier. Meng (2015)
combines these two solvers into a hybrid solver that uses failure criteria and friction laws to adaptively switch
between the (quasi-)static state and dynamic state. The code is capable of modeling episodic fault rupture driven
by quasi-static loadings, e.g. due to reservoir fluid withdraw or injection. Here, we focus on benchmarking the
Defmod results against some establish results.

1. Quasi-static crustal deformation

When a region is subjected to a gradual loading process, such as
tectonic stress changes, viscoelastic relaxation, and pore pressure
changes, it deforms in a quasi-static manner. Every snapshot of a
quasi-static process, as opposed to a dynamic process, satisfies stress
equilibrium. The inertial force is considered negligible, since the net
force is small, and the time scale is large.

For linear constitutive law and small strain problems, the finite
element method, Zienkiewicz (2000), provides a system of linear
equations describing the (quasi-)static state. Eq. (1) lists the absolute
and incremental versions of the linear equation, Smith and Griffiths,
2004.

ΔK U F K U F= , absolute, = Δ , incremental.n n n n n n (1)

where, K is the system stiffness matrix, U is the solution vector and F is
the nodal force, including fluid source. The subscript n is the time
index. In this study, we use the incremental equation. The solution
space UΔ n of a poroelastic problem contains the nodal displacement
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The stiffness matrix Kn and RHS function FΔ n are also different for

the elastic and poroelastic problems, Eq. (2).
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where, Ke is the elastic stiffness matrix, depending on the elastic
constants of the solid. Kc is the fluid stiffness matrix, depending on the
fluid flow conductivity. H is the coupling matrix, depending on the
Biot's coefficient. Sp is the storage matrix, depending the solid
compressibility and porosity, and the fluid compressibility. Smith and
Griffiths (2004) provide the detailed formulation for these matrices and
vectors. Note, the stiffness matrix Kn is constant for evenly spaced time
step tΔ . In a later section, we show that for Newtonian viscoelasticity,
Kn is, although modified, still independent of time. fn and qn are nodal
force and fluid source respectively. The detailed formulations of these
matrices and RHS vectors are given in Appendix A

2. Poroelastic model and benchmark

Unstable pressure is caused by using linear elements, known as the
Ladyzenskaja-Babuska-Brezzi restrictions. The local pressure projec-
tion scheme, Bochev and Dohrmann (2006), is implemented to
stabilize the pore pressure,
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N is the shape function of an element e, ne is the node count of the
element, and G is the shear modulus.

To benchmark the poroelastic model, we compare the Defmod
results against the well known Mandel solution. Fig. 1 illustrates the
Mandel problem.

At time t=0, the boundaries at r a= ± of a homogeneously
pressurized poroelastic matrix suddenly has the pressure dropped
from p0 to zero. And, a compressional loading σ p=z 0 is placed on a
rigid plate at the matrix top. The pore fluid will then flow towards the
side boundaries accompanied by matrix deformation. Because the
matrix is axially symmetric with rigid top and bottom, the pressure,
deformation and stress only vary in r and time, not in z. These values
have closed forms in the Laplace frequency domain, Kurashige et al.
(2005). Here, we apply numerical inverse Laplace transform, Talbot's
method, to have the semi analytical pressure in the time domain.

There are two difficulties to simulate the Mandel problem with a
quasi-static model. First, the initial pressure imposed by the Mandel
problem results a singular pressure gradient at the side boundaries.
Second, implementation of the rigid loading plate requires solving a
contact problem. Thanks for the pressure stabilization method as
mentioned, the models only show some spatial oscillation near the
side boundaries at time zero. The rigid loading plate can be replaced by
uniform loading to avoid the contact problem. This requires the matrix
aspect ratio height a/ to be large enough such that the bottom, at z=0,
will not feel the tilted deformation at the top.

The poroelastic model parameters are listed in Table 1
Fig. 2 plots the initial pressure of a 2D and a 3D poroelastic models

approximating the Cartesian and cylindrical Mandel problems respec-
tively. Because of the symmetry, we only need to consider half of the
Cartesian domain and a quarter of the cylindrical domain in Fig. 1.

The numerical pressure should be normalized by p0 to be compar-
able with the Mandel pressure, Kurashige et al. (2005). A quasi-static
model always produces solutions of some stress equilibrium states.
Therefore, the model, being continuum, cannot produce the theoretical
initial pressure which has a sharp pressure drop, infinite gradient, at
x=a. To resolve this, we sync the model pressure, at r=0, z=0, t t= 1,
p t(0, 0, )model 1 with the Mandel pressure, at r =0, t t= 1, p t(0, )Mandel 1 , i.e.
multiply all the model pressures by p t

p t
(0, )

(0, 0, )
Mandel 1

model 1
, t1 being the first/

smallest nonzero model time.
Fig. 3 plots the normalized pressure as a function of r a/ by the 2D

and 3D models, at z=0, against the Cartesian and cylindrical Mandel
solutions respectively. Where the normalized time τt is given by
τ =t

tK
Sa2 , K being the solid bulk modulus and S being the storage

coefficient. Because of the difference between the model and Mandel
problem in the initial state as mentioned, the comparisons show
greater discrepancy at τ = 0t than at later times.

Note that, the initial state is not only missed by the numerical
solution but also missed by the analytical solution, using the inverse
Laplace transform, Kurashige et al. (2005). We put the time zero
pressure there just for reference. Since the analytical solution is
dimensionless, we have to normalize the numerical pressure in order
have a comparison, similar to Jha and Juanes (2014).

Fig. 4 plots the normalized pressure as a function of time at r( ) = 0
by the 2D and 3D models, at z=0, against the Cartesian and cylindrical
Mandel solutions respectively due to dimensional effect.

The 2D (Cartesian) and 3D (cylindrical) models (Mendel solutions)
show significantly different pressure curves.

To demonstrate the relation between the mesh resolution and the
results, especially the pressure peak at t=0 and near r=a, we make two
meshes for the same 3D model. One of them has 10 cells along the
radius, and another one has 20 cells along the radius. Fig. 5 compares
the two numerical pressures against the analytical result. The pressure
peak becomes lower and closer to r=a as we refine the mesh. The finer
mesh has pressure in between the coarser mesh and analytical
pressures. This suggests that the numerical solution is approaching
the analytical one with the mesh refinement. However, due to the linear
continuum nature of the code, the peak adjacent to the zero pressure
boundary, although becoming lower, would remain for a refined mesh.
Another way to improve the agreement is to refine the mesh where the
pressure gradient is large, see Appendix C.4.

3. Viscoelasticity

For Maxwell power law viscoelasticity, the deformation has affect
on the model in both the stiffness matrix Kn and the RHS function FΔ n,
Eqs. (4) and (5) by Melosh and Raefsky, 1980.
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where, B is displacement to strain matrix depending on the element
geometry, Eq. (A.10). D is the element stiffness matrix depending on
the elastic constants.
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where, e is the viscosity power law parameter. When e=1, η is the linear

Fig. 1. Schematics of the Mandel benchmark problem by Kurashige et al. (2005).

Table 1
Poroelastic model parameters: Young's modulus E, Poison's ratio ν, fluid mobility k,
Biot's coefficient αB, fluid bulk modulus kf.

E [Pa] ν k [m2/Pa/s] αB kf [Pa]

3.0E10 0.25 1.0E-12 0.96 2.2E9

C. Meng Computers & Geosciences 100 (2017) 10–26

11



viscosity. The stress dependent matrix entries are formulated by,

σ σ σ
σ σ σ σ

c e σ c e σ c
e σ S c σ σ σ σ
c e S c σ σ σ σ S

c σ σ σ σ T cσ σ T cσ σ T cσ σ

= 1 + ( − 1)(( − )/(2 )) , = 1 + ( − 1)( / ) ,
= ( − 1)( − )/ , = (2 − − )/(3 ),

where = − 1 . = (2 − − )/(3 ),
= (2 − − )/(3 ), = 2 / , = 2 / , = 2 / ,

xx yy xy

xx yy yy xy x xx yy zz

y yy zz xx z
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1 2 2 2 3
2

1 2 3

(6)

To model visco-poroelasticity, only the submatrix Ke and the subvector
fn in Eq. (2) are affected, Eq. (4), by viscoelasticity. At time zero,

tΔ = 0−1 (n=0), the stiffness matrix is the same as for a purely elastic
formation.

If the stress exponent e=1, i.e. the medium is Newtonian viscoe-
lastic, we have a constant β C′ = η c

1
4 . The stiffness matrix will not vary

with the time index n, if the model time step is evenly spaced,
tΔ = const.
To compare Defmod against some analytically solutions, e.g. Savage

and Prescott, 1978, one needs to emulate an infinite half space and
implement multi-window fault constraint. Nevertheless, a comparison

Fig. 2. 2D numerical model for Cartesian Mandel problem.

τ
τ

Fig. 3. Normalized pressure comparison between 2D model and Cartesian Mandel solution, left, and between 3D model and cylindrical Mandel solution, right.

Fig. 4. Normalized pressure at z r= 0, = 0 versus normalized time (τt) by 2D model,
Cartesian Mandel solution, 3D model and cylindrical Mandel solution.
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against an established FEM code Abaqus™ Simulia (2008) for a
viscoelastic problem is provided by Ali (2014, 2015), where the two
codes produce identical results, Appendix C.4.

4. Fault model and benchmark

A fault is defined by nodes coinciding on an interior surface, and
belonging to different elements on different sides of the surface. Fig. 6
demonstrates a 2D (x z, ) fault model.

The constraint equation for the node pair n n( , )1 3 in Fig. 6 is given
by Eq. (7)
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where, u(·) is the nodal displacement.
The difference between a non-slipping (locked) fault and a slipping

fault is shown by the last two rows of the first equation in Eq. (7), which
prohibit the slipping movement. We assume that there is no separation
and interpenetration, so the first row remain for a slipping fault.

For the poroelastic model with a permeable fault, Eq. (8) applies.
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where, p(·) is the nodal pressure. For a partly permeable fault, Eq. (7)
applies to the impermeable part, and Eq. (8) applies to the permeable
part. For the permeable fault (part), the pressure will not jump across
the fault interface that has infinitesimal width in this modeling work.

Eq. (9) combines the governing equation and the constraint
equation together.
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where the Lagrange Multiplier, λn, is the nodal forces/sources needed
to honor the constraint equation. Each row of the constraint matrix G
has two exact opposite nonzero entries, Eqs. (7), (8), so λn will
introduce exact opposite force/source to the node pairs on different
sides of the fault. The force on the node pair (1, 3) in Fig. 6, for
instance, is given by Eq. (10)
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Fig. 5. Normalized pressure from a same 3D model of different mesh resolutions, 10 cells along radius nr=10 and 20 cells along radius nr=20, and analytical result. Left, pressure
profile along radius; right, pressure at origin as a time function.

Fig. 6. Fault constraint: node n1 coincides with node n3; node n2 coincides with node n4;
the vector n and t are the fault's normal and tangent vectors respectively.
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The fault shear to normal stress ratio at the node (1, 3) is equivalent to
the shear to normal nodal force ratio given by Eq. (11).

λ
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(1,3)
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where, the normal stress is assumed compressive. This equality allows
us to evaluate the slip tendency of a fault patch without evaluating the
element-wise stress, e.g. Eq. (12) for nodes 1 and 2 in Fig. 6,
Zienkiewicz, 2000.
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where, the matrices B and D are the same as in Eq. (4) and Appendix A
Matrix T translates the stress tensor from the (x,z) coordinates to t n( , )
coordinates in Fig. 6. If the fault is curved, the translation matrix T
varies with position. Stress tensor σ (1) and σ (2) are subsets of the
element stress σ E( )+ , corresponding to nodes 1 and 2 respectively.

The coinciding node pairs belong to different elements. For
instance, calculation for the stress at the nodes 1, 2 in Fig. 6 does
not involve the nodal displacement of the element E−. Likewise, the
stress at nodes 3 and 4 are calculated without considering element E+.
The stress, by Eq. (12), is more of an element value than nodal value,
although they are equivalent when an element collapses to a dot. The
fault stress would not be very accurate, if either the element is large, or
the stress gradient is high.

Fig. 7 illustrates the anisotropic loading model. At the start, we
incrementally load the sample at the rate of σ σΔ = Δ = 0.2 MPa/yrH V . At
year 50, we stop the loading increment in the horizontal direction, and
keep the increment in the vertical direction until year 150. For all the
static benchmark problems, we assume the shear stress is not enough
to make the frictional contact slip, then the contact is locked. In this
case, the fault orientation (curvature) and local stress tensor determine
the local Coulomb stress.

Because of the fault curvature, the nodal force is varying along the
fault at anisotropic stress state. At different depths, the fault has
different dip angle α, and associated stress τ and σn. Since the stress is,
although anisotropic, homogeneous all over the domain, the Mohr-
Coulomb circle is known analytically.

Fig. 8 compares the Mohr-Coulomb circles calculated by Defmod
against the analytical ones. The absolute numerical stress τ and σn are
again from the nodal force, i.e. Lagrange Multiplier. To translate the
nodal force (Newton) to stress (Pa), we compute the node-wise force-
to-stress ratio from the first step (isotropic) loading result.

Shown by Fig. 8, although the stress is different at different depths,
for a given loading condition, the resulting Mohr-Coulomb circles are
the same, and overlap well with the analytical ones. We use the fault
vectors (strike, dip and normal) to construct the constraint equation,

Eqs. (7), (8). The vectors however, only have definition on the fault
(element) facets. To have the vectors at a node (pair), we calculate them
for all the adjacent facets, and take average. The resulting vectors are in
general not strictly equal to the exact fault vectors that are given
analytically in this example. This contributes the slight misfit in Fig. 8.
When the fault curvature is high and/or the element (facet) is large,
this approximation may result poorly. Fortunately, the unstructured
mesh used by Defmod can be locally refined.

Fig. 9 compares the stress ratio τ σ/ n calculated by Defmod at
different depth and time against the analytical values. The numerical
stress ratio is given by the equivalent ratio of the nodal force, i.e.
Lagrange Multiplier in Eq. (11).

In another example the fault is planar and has a dip angle β = 60°.
We apply gravity at start and gradually add compressional traction on
the top, σ̇ = 0.2 MPazz /yr. The bottom and side walls have zero normal
displacement. Fig. 10 plots the stress (τ σ, n) and associated Mohr-
Coulomb circles. In this example, analytical stress are σ ρgz σ t= + ˙zz zz
and σ σ σ= =xx yy

ν
ν zz1 − . For ν = 0.25, all the stress evaluations (τ σ, n)

should appear on a straight line that passes the origin, and has 3 /3
slope, θ = 30°. Since β θ π2 − = /2, this line should be tangent with all
the Mohr-Coulomb circles. This is exactly shown by the figure.

5. Dynamic model

An elastodynamic problem has the governing equation given by Eq.
(13).

Mu Cu Ku f¨ + ˙ + = , (13)

where, M is the mass matrix; α βC M K= +η η is the damping matrix; αη
and βη are the Rayleigh damping coefficients. The detailed matrices and
RHS vector formulations are given in Appendix A.

Newmark explicit scheme has Eq. (14).

t tu M f Ku C u u u u= (Δ ( − ) − Δ ( − )) + 2 −n n n n n n n−1 2 −1 −1 −2 −1 −2 (14)

The incremental form is given by Eq. (15).

t tu M f K u C u u u
u

Δ = (Δ (Δ − Δ ) − Δ (Δ − Δ )) + 2Δ
− Δ

n n n n n n

n

−1 2 −1 −1 −2 −1

−2 (15)

Eq. (15) provides the unconstrained dynamic solution at tn. For the
constrained dynamic solution we apply the forward incremental
Lagrange Multiplier method, Carpenter et al., 1991, Eq. (16).

λ λt tGM G G u I u u M G= (Δ ) ( Δ − )Δ = Δ − Δ ,n T n n n n T n2 −1 −1 2 −1 (16)

where the Lagrange Multiplier λn is the nodal force needed to constrain
the solution. λ itself, being a stress proxy, is constrained by physical
laws, e.g. yielding stress or maximum friction. The model implements
the frictional fault slip by capping the friction, i.e. λ component tangent
to the fault face, with the product of friction coefficient and normal
stress, i.e. λ component perpendicular to the fault face. Here, we call
this approach, Bartolomeo et al. (2010), Lagrange Multiplier (LM)
capping method. This method, as appose to the traction at split node
(TSN) method, Dalguer and Day (2007), does not require solving a
subspace problem.

Lysmer and Kuhlemeyer (1969) propose that the absorbing bound-
ary for the elastodynamic model can be achieved by adding additional
terms to the damping matrix, Eq. (17), for all the element facets on the
boundary.

⎧
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∫
∫

c
c ρV dΓ i
c ρV dΓ i

i
axis

=
+ , p wave ,
+ , p wave⊥ axis,

for all − axes.ii
ii Γ p th

ii Γ s th
(17)

Fig. 7. Schematics of a curved fault embedded in an elastic domain under anisotropic
confining stress, left; the Mohr-Coulomb circle varying with the dip angle, right. A
positive τ-truncation (τ > 00 ) is usually associated with the cohesion, and the negative
truncation is usually associated with the pressurized pore space.
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6. (Quasi-)static dynamic hybrid model

A (quasi-)static-dynamic hybrid solver has been implemented by
Meng (2015). Fig. 11 gives the flow chart of this solver. When the stress
state, τ and σn satisfies some failure criterion, the dynamic solver will
takeover so that the fault will slip. The constraint equations associated
with the tangential direction of the slipping patches are relaxed by
limiting the maximum friction, required to prevent the fault from slip,
with the yielding limit, μσn, where μ is the frictional coefficient. At the
end of a dynamic run, an implicit (static) solver will reevaluate the
stress drop, and ensure that the fault will be no longer slipping, i.e. with
zero net force, after returning to a quasi-static state.

Fig. 12 illustrates the rupture process. When the split node pairs
start to shear, they will squeeze and stretch their neighbors, resulting
stress localization at the rupture fronts. This localized stress will drive
the rupture to propagate further. The dynamic fault rupture, in return,
will relax the shear stress on the slipping pairs, and reduce their
slipping momentum. A slipping patch, in 1D (2D model), may break

Fig. 8. Mohr-Coulomb circles by Defmod against the analytical results. The right is an amplified plot of the left enclosed by the square.

Fig. 9. Stress ratio τ σ/ n calculated by Defmod at different depth and time against the
analytical values.

Fig. 10. Mohr-Coulomb circles for a 60° dip fault.

Fig. 11. Flow chart of the hybrid solver.
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into segments and have multiple rupture and arrest fronts.
Once the whole fault is stabilized, i.e. no dynamic ruptures is taking

place, the model is expected to jump back to the quasi-static (parent)
loop, as in Fig. 11. However, we are often interested in the wave forms
on the top domain surface due to the dynamic rupture. Therefore, we
keep the dynamic model running for some time to let the wave forms
reach the synthetic seismometers before having the model back to the
parent loop. The mode shift is often accompanied by boundary
condition changes. A 3D subsurface dynamic problem usually has
different boundary conditions, e.g. the sides and bottom being absorb-
ing, and the top being traction free, than those under the static mode.

7. Benchmarking the hybrid model

Due to the complexity of the hybrid model, it is hard to find an
analytical solution to compare against. Southern California Earthquake
Center (SCEC) hosts a dynamic earthquake rupture code verification
project, Harris et al. (2010), where different models can compare

against each other by solving the same set of synthetic problems. A
dynamic rupture problem can be described by a single iteration of a
hybrid model, Fig. 11. When a quasi-static state, with prescribe fault
stress, satisfies the slipping condition, the model will run in the
dynamic (child) loop, and generate waveforms at given observation
locations. The focus of the SCEC benchmark is indeed comparing the
waveforms by different models.

Here, we present the result for the benchmark problem TPV205,
see http://scecdata.usc.edu/cvws for detailed problem description. The
model layout is given in Fig. 13. The strike slip rupture starts at a
square shaped nucleation zone, with the shear stress τmid overshooting
the yielding stress, i.e. static friction μ σnsta . The background shear stress
τref is between the dynamic friction μ σndyn and static friction. A square
patch to the left of the nucleation zone has shear stress τleft higher than
the background, and a square patch to right has shear stress τright lower
than the background. The temporal friction coefficient follows the slip
weakening law, Eq. (18),

⎪

⎪⎧⎨
⎩μ

μ μ D D μ D D
μ D D=
( − )(1 − / ) + , ≤

, > ,c c

c

sta dyn dyn

dyn (18)

where, μsta and μdyn are the static and dynamic friction coefficients
respectively, D is the slip distance, u u∥ − ∥(+) (+) , and Dc is the slip
weakening distance. The parameter values are listed in Table 2.

Fig. 14 compares the three component velocity calculated by
Defmod against the codes EqSim (now Pylith), Aagaard et al. (2015),
and Roten, Dalguer and Day (2007) and Cui et al. (2010), for the
surface station 3 km off the fault, and −12 km along the fault from the
epicenter. Fig. 15 shows the waveform comparison for the surface
station 3 km off the fault, and 12 km along the fault from the epicenter.
Fig. 16 shows the waveform comparison for the subsurface station
3 km off the fault, and −12 km along the fault from the hypocenter.
Fig. 17 shows the waveform comparison for the subsurface station
3 km off the fault, and 12 km along the fault from the hypocenter.
Fig. 18 shows the rupture front comparison. Within the contour of each
time step, 0.5 s spaced, the slip distance is greater than 1 mm.

Both the waveform and rupture front plots suggest that Defmod,
being an FE code, agrees more with the FD code Roten than with
another FE code EqSim. Note that, the SCEC benchmark presents the
comparisons among different numerical codes, whereas the true
solutions are, and will remain, unknown. Therefore, only by comparing
the SCEC problem results, it is hard to argue which code is more

Fig. 12. Schematics of the rupture process: f(·) denotes the net nodal force at different

steps, the green frames enclose the slipping patches, the red frames enclose the locked
patches, and the cyan frames enclose the rupture/arrest fronts. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 13. SCEC TPV205 theme.

Table 2
SCEC benchmark TPV205 parameter list.

vs vp ρ σn τref τ left τmid τright Dc μsta μdyn
m/s m/s kg/m3 MPa MPa MPa MPa MPa m

3464 6000 2670 120 70 78 81 62 0.4 0.667 0.525
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accurate than the rest.
In addition to TPV205, the similar comparisons for TPV102 are

given in Appendix C.5, where the rate and state friction law, Ampuero
and Rubin (2008), is implemented.

The hybrid model, unlike others, will return to the quasi-static
(parent) loop once the dynamic run is over. The resulting fault slip and
associated stress perturbation are taken into account when examining
if another seismic event shall happen in the following quasi-static
steps. This is not in the scope of the SCEC benchmark. Nevertheless, we
demonstrate an external loading triggered earthquake by revisiting the
anisotropic loading example that would result the fault stress profile
evolution given in Fig. 9. If we set the frictional coefficients μ = 0.55sta
and μ = 0.5dyn , the fault would rupture before 150 yr at depth about
2 km. When the model returns back to the quasi-static state, the
perturbed displacement should show discontinuity across the fault face
due to the rupture in the previous dynamic steps.

Fig. 19 plots the displacement increment (delta function) magni-
tude snapshot showing the seismic radiation due to the fault rupture,
left panel, and the x-displacement showing discontinuity due the
rupture, right panel. The seismic radiation is capture by the dynamic
part of the hybrid solver, and the perturbed displacement is captured
by the quasi-static (parent) part. When the static-to-dynamic shift
happens, the side and bottom boundaries will change from loading and
zero normal displacement conditions to absorbing condition. When
dynamic-to-static-shift happens, the boundary conditions will change
back.

Fig. 14. SCEC TPV205 waveform comparison, station 1, velocity in x, y,z directions.

Fig. 15. SCEC TPV205 waveform comparison, station 2, velocity in x, y, z directions.

Fig. 16. SCEC TPV205 waveform comparison, station 3, velocity in x, y, z directions.

Fig. 17. SCEC TPV205 waveform comparison, station 4, velocity in x, y, z directions.

Fig. 18. SCEC TPV205 fault rupture front comparison.
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8. Summary

Table 3 lists the major functionalities implemented in Defmod.
Defmod models the pore fluid flow and resulting matrix deformation by

a standalone approach, without coupling with any external code. A
benefit of this approach is that the effort to build, maintain and upscale
the model is considerably less than a two way coupled approach, Jha
and Juanes (2014). The code scales uniformly across the fluid and solid
parts.

The code integrates the (quasi-)static and dynamic processes into
an episodic (hybrid) process, using two time scales. The perturbations
introduced by the previous seismic events are taken into account in the
following computing steps. This feature enables one to model the
interactions between the sequentially induced earthquake events.

The code, being sophisticated, remains light weight. The scalability
is inherited from the linear algebra toolkit PETSc (Balay et al., 2015),
which ensures high performance across platforms from a single
processor laptop to a multi-processor cluster, see Ali (2014) for
detailed scalability.

Defmod, being an FEM code, is not without limitations. Only single
phase, slightly compressible pore fluid is considered. This code is not
meant to replace a reservoir simulator for multiphase multicomponent
and/or reactive porous flow.
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Appendix A. Integration forms of the governing equations

The elastodynamic deformation u has the governing equation:

σ σ ϵ ϵρ t η t
u u f D u∂

∂ + ∂
∂ − ∇· − = 0, where, = , = ∇ ,

2

2 (A.1)

D is elasticity matrix depending on the material properties, and f is body force. Generalized-α method for time discretization:

σ
σ σ σ

σ σ

ρ η
α α α α α α α α

u u f
u u u u u u f f f
u

¨ + ˙ − ∇· − = 0,
where, ¨ = (1 − ) ¨ + ¨ , ˙ = (1 − ) ˙ + ˙ , ∇· = (1 − )∇· + ∇· , = (1 − ) + ,

= ( ),

n α n α n α n α

n α n n n α n n n α n n n α n n

k k

+1− +1− +1− +1−

+1− m +1 m +1− f +1 f +1− f +1 f +1− f +1 f

m f f f

m f f f

(A.2)

Newmark time stepping scheme for a choice of β and γ:

Fig. 19. Left: dynamic output showing displacement increment (delta function) magnitude within one time step due to the fault rupture. Right: quasi-static output showing the absolute
x-displacement that is discontinuous due to the previous dynamic rupture.

Table 3
Summary of Defmod functionalities, numerical methods, benchmarks and references.

Functionality Method Benchmark Reference

Implicit, Smith and Griffiths
(2004),

Poroelasticity pore pressure Mandel Bochev and Dohrmann
(2006),

stabilization Kurashige et al. (2005)
Viscoelastic Implicit Abaqus Melosh and Raefsky

(1980)
power law Ali (2014)
(quasi)static Lagrange Mohr-Coulomb Zienkiewicz (2000)
constraint Multiplier
Elastodynamic Forward

increment
Wong et al. (1989)

constraint Lagrange
Multiplier

SCEC Carpenter et al. (1991)

absorbing viscous damping Lysmer and Kuhlemeyer
(1969)

Isostasy Winkler Fry`ba (1995)
Foundation

Fault/faulting implicit/explicit SCEC Bartolomeo et al. (2010)
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(A.3)

After substitutions, the only variable that has subscript n + 1, i.e. needs to be sought for time tn+1, is the displacement un+1. All the other variables
are available from the previous time steps.

We put all the unknowns to the left hand side of the equation, and put others to the right hand side:

σ σc c α c c c c c c α α α

c ρ α
β t c ρ α

β t c ρ α β
β c ηγ α
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(A.4)

To solve this equation using finite element method, we write Eq. (A.4) in the weak form by multiplying the LHS and RHS with a vector valued test
function r x( ), and take volume integrals over the model domain.

L H Ωr r r( , LHS) = ( , RHS) , ∀ ∈ ( ( )),Ω Ω 2 1 (A.5)

where, (·,·)Ω denotes the L2 inner product integrated over domain Ω.
Integrating by part the stress divergence terms, and applying the general Stokes' Theorem, we have:

σ σ σr r r n( , (∇· )) = −(∇ , ) + ( , ( · )) ,k Ω k Ω k Ω∂ (A.6)

where, n is normal vector on the domain boundary denoted by Ω∂ .
For given boundary traction τ σ n= ·k k , the governing equation is written as:

σ
σ τ τ

c c α c c c c c
c α α α α α

a L a r u r u r L r u r u r u r u r u
r u r r r f f

= , where = ( , ) + ( , ) + (1 − )(∇ , ) , = ( , ) + ( , ˙ ) + ( , ¨ ) + ( , ) + ( , ˙ )
+ ( , ¨ ) − (∇ , ) + ( , (1 − ) + )) + ( , (1 − ) + ) .
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m
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m
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d
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d
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d
(3)

f f +1 f ∂ f +1 f (A.7)

This equation can be solved for given initial conditions u u u( , ˙ , ¨ )0 0 0 , boundary conditions τn and body forces fn. Usually the body force is a known
constant, e.g. ρf f g= =n n+1 . A second order time scheme, is an implementation of the generalized-αmethod with specific β, γ, αm and αf . A first oder
time scheme is obtained by neglecting the last terms in Eq. (A.3).

The test function, r x( ), within an element e is given by the products of the shape function, N x( )e( ) , N N([ …])1 2 , and the nodal values, r e( ) r r([ …] )1 2 T ,

r x N x r( ) = ( ) .e e( ) ( ) (A.8)

The width (height) of the two product terms is the node count of the element. Similarly, the gradient of the test function is given by

r x B x r∇ ( ) = ( ) .e e( ) ( ) (A.9)

The matrix B e( ) is given by, Smith and Griffiths (2004),

B AS= .e e( ) ( ) (A.10)

Matrix A is a derivative operator and matrix S e( ) is the shape function stretched in the test/trial function dimension. For 3D Cartesian case, these
two matrices are

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥
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⎤

⎦
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x
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z
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z x

N N
N N

N N
A S=

∂/∂ 0 0
0 ∂/∂ 0
0 0 ∂/∂

∂/∂ ∂/∂ 0
0 ∂/∂ ∂/∂

∂/∂ 0 ∂/∂

, =
0 0 0 0 …

0 0 0 0 …
0 0 0 0 …

.e( )
1 2

1 2
1 2

(A.11)

The width of S e( ) is the element node count multiplied by dimension, 3. The shape function and its spatial derivatives differ for different choice of
element. If B e( ) has the layout determined by Eq. (A.10), (A.11), the r e( ) should be flattened, i.e. r r[ …]1

T
2
T T, to keep the product in Eq. (A.9),

conforming.
For a flattened test function, N e( ) should be substituted by S e( ), to keep the product of Eq. (A.8) conforming. As shown later however, the shape

function itself only appears in N Ne e( )T ( ) when assembling the element mass (and/or damping) matrix. Instead of forming S e( ), we first take this inner
product, and stretch it to be conforming with the flattened nodal vector space, r e( ). In Defmod, this is done by function FormElM in the file
m_local.F90. Without causing ambiguity, we keep using the notation N e( ) together with the presumably flattened r e( ).

The element integrals of the inner products in Eq. (A.7) become

∫ ∫dΩ dΩr r N r r B( , (·)) = (·) , (∇ , (·)) = (·) ,e e
Ω

e e e e
Ω

e e( )T ( )T ( )T ( )T
e e (A.12)

The equation Eq. (A.8) also applies to the trial functions, i.e. u x( ) and its time derivatives, by substituting r e( ) with u e( ) and its time derivatives.
Likewise, the element (nodal) vectors are presumably flattened.

The first row of Eq. (A.12), after writing the trial functions in form of Eq. (A.8), and substitute (·), becomes

∫c c dΩr u r N N u( , ¨ ) = ¨ ,m e e
Ω m

e e e e
(·) ( )T (·) ( )T ( ) ( )

e (A.13)

where cm
(·) is one of the coefficients listed in Eq. (A.7) that contain ρ. Eq. (A.12) suggests that, a left multiplication term r e( )T would be resulted by all

the integrals on both LHS and RHS of Eq. (A.7). Due to the arbitrariness of r, the equation should hold before the left multiplication. What needs to
be integrated by element is
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∫ ρ dΩN N M= .
Ω

e e e e( )T ( ) ( )
e (A.14)

When Ü is available, we use the vector MÜ to assemble the RHS, if not, we use the matrix M to assemble the factor matrix of the LHS. Here, we use
capital vector symbols to denote the global vectors, and matrix symbols without superscript e to denote the global matrices. The global matrices and
vectors are formed by adding the contribution from each element via an element-to-global degree of freedom map.

The product of B e( ) and u e( ) yields the (vector shaped) strain tensor.

ϵ x B x u( ) = ( ) .e e( ) ( ) (A.15)

The formulation of B e( ) insures a symmetric tensor ϵ, known as symmetric gradient. Substituting the strain in Eq. (A.1) by Eq. (A.15), the stress
within the element e is then

σ x D B x u( ) = ( ) .e e e( ) ( ) ( ) (A.16)

The second row of Eq. (A.12), after substituting (·) with Eq. (A.16), becomes

∫σ dΩr r B D B u(∇ , ) = .Ω e
Ω

e e e e e( )T ( )T ( ) ( ) ( )
e

e (A.17)

Again, because of the arbitrariness of the test function, what needs to be integrated is

∫ dΩB D B K= .
Ω

e e e e e( )T ( ) ( ) ( )
e (A.18)

When U is available, we use the vector KU to assemble the RHS, if not, we use the matrix K to assemble the factor matrix of the LHS.
In principal, the damping matrix should be integrated like

∫ η dΩN N C= ,
Ω

e e e e( )T ( ) ( )
e (A.19)

The damping parameter η can be scaler or tensor (e.g. absorbing boundary) valued. In Defmod, instead of doing this integration, we use the relation
α βC M K= +η η to form the global damping matrix. The scaler parameters αη and βη, known as ‘Rayleigh’ damping coefficients, are discussed by

Timoshenko et al., 1974.
In Defmod we implement a first order time scheme, i.e. neglect the last terms in Eq. (A.3), and set the parameters γ = 1, β = 1, α = 0m and α = 1f .

This leads to, after writing Eq. (A.7) in the global integral form,

∫ ∫τ d Ω dΩ t tMU CU KU N N f U U U U U U U¨ = − ˙ − + ∂ + , ˙ = ( − )/Δ , ¨ = ( − 2 + )/Δ ,n n n
Ω

n
Ω

n n n n n n n+1
∂

T T −1 +1 +1 −1 2
(A.20)

Eq. (14) is then obtained by adjusting the time indices, and combining the traction and body force terms into a global nodal vector fn.
In Defmod, the boundary traction is given facet-wise. Instead of making the boundary integral as in Eq. (A.20), we multiply the traction with the

facet area, and evenly distribute the force to the nodes associated with the facet. Likewise, we evenly distribute the element body force (weight) to
the associated nodes, instead of making the volume integral as in Eq. (A.20). In addition to boundary traction and body force, one can also specify
nodal force directly.

This first order approach is attractive because the mass matrix can be diagonalized, Zienkiewicz (2000), without significantly affecting the
accuracy. This diagonalization, also known as lumping, makes the updates Eqs. (15), (16) explicit. In Defmod, mass matrix lumping is done
element-wise, following a simple row sum method, see function FormElM. The Courant-Friedrichs-Lewy criterion states that, the maximum time
step and maximum wave frequency in this explicit scheme is restricted by

t L E ρ f μ ρ LΔ ≤ / / , ≤ 0.1 / / , (A.21)

where L is the representative length of the elements, E and μ are the elastic moduli. Note that, μ ρ/ gives the shear wave velocity, which means one
wavelength should be described by at least ten elements. From the aiming frequency, density and elastic moduli, one can estimate the appropriate L
and then tΔ . The problem size is determined by the domain scale and L.

In the context of ground motion, the uncertainties from the earth model would certainly overwhelm the artifact due to the low order time scheme
and mass matrix lumping, which makes this explicit approach adequate enough. With all the necessary parts, K, M and fn, in hand, one should be
able to formulate a second order approach without too much work. In that case, M does not have to be lumped, because a non-trivial matrix
inversion cannot be avoided in the first place, i.e. requiring implicit solving. This only makes sense when accuracy rather than efficiency becomes
priority.

An elastostatic problem has the integration governing equation, by simplifying Eq. (A.20),

KU f= ,n n (A.22)

where K may need to be updated depending on the viscoelasticity order.
The slightly compressible pore fluid pressure p has the governing equation:

α ϵc ϕp k p q˙ − ∇· ∇ − ˙ = ,t B
T (A.23)

where α α= [1 1 1 0 0 0]B B T, ϵ = [ϵ ϵ ϵ ϵ ϵ ϵ ]xx yy zz xy yz xz T in 3D, α ∈ [0, 1]B being the Biot's coefficient, ct is the total compressibility, k is the fluid
mobility (permeability divided by fluid viscosity) and q is the fluid body source (injection positive).

We multiply both sides of Eq. (A.23) by a scaler valued test function r, r L H Ω∀ ∈ ( ( ))2 1 , and integrate over Ω. The term with pressure gradient,
after integrated by part, becomes

r k p r k p r kn p( , ∇· ∇ ) = −(∇ , ∇ ) + ( , · ∇ ) .Ω Ω Ω∂ (A.24)
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We use f to denote kn p· ∇ , the fluid flux in the boundary normal direction n, The weak form governing equation becomes

α ϵr c ϕp r k p r r q r fa L a L= where, = ( , ˙) + (∇ , ∇ ) − ( , ˙) = ( , ) + ( , ) ,t Ω Ω Ω Ω ΩB
T

∂ (A.25)

Note that, we use the bold font to differentiate the vector/tensor values from scalar values. The fluid mobility k is sometimes tensor valued,
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in 3D. Eq. (A.8) stays the same after substituting the vector test function with the scalar one. Eq. (A.9) becomes

r x dN x r∇ ( ) = ( ) ,e e( ) ( ) (A.26)

where in 3D,
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The width of dN e( ) is the node count of the element.
Similar to Eq. (A.12), the element integrations in Eq. (A.25) are of the forms,

∫ ∫r dΩ r dΩr N r dN( , (·)) = (·) , (∇ , (·)) = (·) ,e e
Ω

e e e e
Ω

e e( )T ( )T ( )T ( )T
e e (A.28)

The time derivative p x˙ ( ) can be written in the form of Eq. (A.8), by substituting r x( ) and r e( ) with p x˙ ( ) and ṗ e( ). The gradient p x∇ ( ) can be written in
the form of Eq. (A.26) by substituting r(x) and r e( ) with p(x) and p e( ). The strain rate ϵ̇ is given by Eq. (A.15), by substituting u with u̇. Very integral in
Eq. (A.25), shown by Eq. (A.28), would result a left multiplication term r e( )T. Again, because of the arbitrariness of the test function, the equation
should hold before the left multiplication. What need to be integrated are

∫ ∫ ∫αdΩ dΩ c dΩdN k dN K N B H N N S( ) = , = , = ,
Ω

e e e c
e

Ω
e e e e e

Ω
e t e e p

e( )T ( ) ( ) ( )T
B
T( ) ( ) T( ) ( )T ( ) ( )

e e e (A.29)

where, α e
B
( ) is formed by stacking αB (identical within one element) for each node of e horizontally. the coupling matrix H e( ) is defined this way to

state consistent with Eq. (2) and the code. The total compressibility is given by

c α α ϕ k ϕ k= (1 − )( − )/ + / ,t s fB B (A.30)

where, ks and kf are bulk moduli for the solid and fluid respectively.
The element integral equation becomes

q fH u S p K p N N− ˙ + ˙ + = ( , ) + ( , ) .e
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e
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e

n
e
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e e

n Ω e
n ΩT( ) ( ) ( ) ( ) ( ) ( ) T( ) T( ) ∂e e (A.31)

Applying the first order time scheme, i.e. tp p p˙ = ( − )/Δn n n−1 , and tu u u˙ = ( − )/Δn n n−1 , Eq. (A.31) becomes

t t q fH u u S p p K p N N− ( − )/Δ + ( − )/Δ + = ( , ) + ( , ) .e
n
e

n
e

p
e

n
e

n
e

c
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e e

n Ω e
n ΩT( ) ( )

−1
( ) ( ) ( )

−1
( ) ( ) ( ) T( ) T( ) ∂e e (A.32)

Note that, a higher order time scheme for p is impossible for Eq. (A.23), becomes the second order time derivative p̈ has been already neglected.
Again, we combine the source/flux terms as a global vector, denoted by qn in Eq. (2), instead of doing the integrations. This is done by multiplying
the facet-wise (element-wise) flux (source) by the facet area (element volume) and evenly distribute the value to the associated nodes. In addition,
one can specify the nodal flow rate directly.

The global incremental equation, after denoting u u uΔ = −n n n−1, and p p pΔ = −n n n−1, is given as:

t tH u S K p K p q− Δ + ( + Δ )Δ = −Δ + .n p c n c n n
T

−1 (A.33)

Note that, the block structured matrix in Eq. (2) only exits temporarily and element-wise, but we hide the superscript to be concise.
When the pore pressure acts on the solid, it will result an additional stress term,

σ σ α p= − ,total B (A.34)

where, the Biot's coefficient should be tensor shaped, α α I=B B 3×3 in 3D, to make the product conforming. Shown later however, the Biot's
coefficients will all appear as α e

B
( ), e.g. in Eq. (A.29). Therefore, without causing ambiguity, we keep the notation unchanged.

The contribution of this stress to the RHS of Eq. (A.1) is α p−∇· B . Multiplied by the test function r, and integrated by part, this term becomes

α α αp p pr r r n−( , ∇· ) = (∇ , ) − ( , ( , )) .Ω Ω ΩB B B ∂ (A.35)

The second term in Eq. (A.35) is taken care of by the pressure boundary condition, a part of fn in Eq. (A.22), instead of doing the integration. r∇ is
given by Eq. (A.9), and p is given by Eq. (A.8), after substituting r x( ) and r e( ) with p x( ) and p e( ). The first term in Eq. (A.35), element-wise, becomes

∫α αp dΩr r B N p(∇ , ) = .Ω e
Ω

e e e e eB ( )T ( )T
B
( ) ( ) ( )

e
e (A.36)

What needs to be integrated, comparing Eq. (A.36) to Eq. (A.29), is actually H. The global integral equation for the solid becomes

K u Hp f+ = ,e n n n (A.37)

where, Ke denotes the elastic stiffness matrix. After substituting u, p and f with uΔ , pΔ and fΔ , Eq. (A.37) becomes a incremental equation,
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K u H p fΔ + Δ = Δ .e n n n (A.38)

Writing Eq. (A.38) on top of Eqs. (A.33), (2) is then obtained. Note that, the stress resolved by this formulation, is the solid stress instead of the total
stress.

The pressure stabilization scheme in Eq. (3), Bochev and Dohrmann, 2006, is equivalent to adding an additional term to the RHS of Eq. (A.25).

q n I Gx N x p p( ) = ( ( ) − (1/ ) )(Δ + )/(2 ),n e e n
e

n
e

N+1 ( )
+1

( ) ( )
(A.39)

where, n IN x( ) − (1/ )e e N( ) is a zero-sum shape function which ensures the mass balance. Implementing the same treatment as to the other terms in
Eq. (A.25), substituting the shape function with the zero-sum one, Eq. (3) is then obtained.

Appendix B. Prepare and run defmod model

To download the unmodified Defmod, execute the Mercurial command hg clone https://bitbucket.org/stali/defmod To download the modified
Defmod, Meng (2015), execute the Mercurial command hg clone https://bitbucket.org/chunfangmeng/defmod-dev Compilation of Defmod
requires a PETSc installation, detail described in the file INSTALL.

A single input (.inp) file contains both the mesh data and model parameters. To run a model foo.inp, execute command

(pathtodefmod)/defmod − ffoo. inp[PETScoptions]

Defmod takes in PETSc arguments. To use the direct solver MUMPS for example, run the model with the PETSc option

−pctypelu − pcfactormatsolverpackagemumps

The python code Mandel3D_preproc.py in example/Mandel/Mandel3D provides an example of preparing the .inp file, for an
unconstrained model. This code requires installation of the meshing tool Cubit/Trelis Sandia National Lab, 2012. To generate the input file
Mandel3D.inp, run

./ Mandel3Dpreproc. py

This code generates the mesh, specifies the model parameters and write out the .inp file.
The python codes Fault3dhex.py and Fault2dqua.py in Fault3d_hyb and Fault2d_hyb provide examples of preparing the .inp files,

for fault models in 3D and 2D. These two codes do not require Cubit/Trelis. Instead, they require netCDF4-python installation, http://unidata.
github.io/netcdf4-python/, and mesh (.exo) files in Exodus II format. To generate the input files 3D_flt_cur.inp and 2D_flt_cur.inp, run

./ Fault3dhex. py3Dfltcur. exo

and

./ Fault2dqua. py2Dfltcur. exo

The resulting .inp files can be viewed by any text editor. The meaning of each data block is described in the python codes that generate the
.inp files. Users are encouraged to modify the python and Cubit journals to build their own specific models. Note that, in order to run a model
generated by the python code, one needs to use the modified Defmod.

Appendix C. Duplicate the benchmark results

Assuming one has completed the compiling process following INSTALL, all the benchmark results presented here can then be duplicated. Go to
(path to defmod)/example, and execute command lines as follows.

C.1. Mandel benchmark

Go to Mandel, execute the commands

[MPI options]../../ defmod − f Mandel2D/Mandel2D. inp [PETSc options][MPI options]../../ defmod − f Mandel3D/Mandel3D. inp [PETSc options]

and run the python code

./ Mandelbench. py

to plot the pressure comparisons, Figs. 3 and 4. In addition to the pressure, the displacement also has analytical form, Kurashige et al. (2005). One
can modify the code Mandel_bench.py to benchmark the displacement as well.

C.2. Mohr-Coulomb benchmark

Go to Fault3d_hyb, make sure the preprocessing python code Fault3Dhex.py has the variables set as follow.

…fault = Trueporo = Falsevisc = False…t = 1500000. ;dt = 100000. ;nviz = 1…fc = .6*np. ones((len(vecf), 1))…

Run the preprocessing code

./ Fault3Dhex. py3Dfltcur. exo

Input file 3D_flt_cur.inp is then produced. Run the model, view the .vtk files using Paraview Henderson, 2007, and run the python code

./ defmodCoulomb. py3Dfltcur
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to make the Mohr-Coulomb circle plot Fig. 8.

C.3. SCEC TPV205 benchmark

Go to example/tpv5, and run the meshing script with Cubit/Trelis

trelis − nographics − nojournalTPV205. jou

to generate the mesh file TPV205.exo. Run preprocessing command

./ TPV205. pyTPV205. exo

to generate the input file TPV205.inp. Check the screen output for the problem size, and run the model TPV205.inp. Note that, the result
presented here was produced on a cluster computer using 128 processors. The runtime was within 4 min. For different mesh size, set by
TPV205.jou, and different number of processors, the runtime would vary.

Sort the output data by command.

./ defsort. pyTPV205slip

A sorted file TPV205.mat is then produced. Run the wave form plotting script

./ TPV205plot. pyTPV205slip

to produce Figs. 14 and 17. The temporal slip rate on the fault can be animated by running the script

./ defplot. pyTPV205slip

C.4. Additional (quasi-)static benchmarks

Here, we present a viscoelastic benchmark by modeling deformation due to 1.0 m slip on a 100 km long strike-slip fault that extends from the
surface to a depth of 25 km. The elastic crust is 25 km thick and overlies a 225 km thick viscoelastic mantle that has a Maxwell viscosity of η = 1018

Pa s. The model domain is 500 km by 500 km by 250 km, Fig. C.1.
Fig. C.2 compares the displacement in strike direction against Okada (1985), Relax, Barbot and Fialko (2010), and Abaqus solutions. Okada and

Relax are for infinite half space, whereas Defmod and Abaqus are for finite space. Due to this difference, the figure shows disagreement. Note that,
Okada does not consider viscoelasticity, so only time zero solution is available.

We present a non-conformal approach for the cylindrical Mandel benchmark to see how the localized mesh refinement would improve the
agreement. Fig. C.3 shows the mesh of a cylindrical domain with two refined regions near the perimeter of the cylinder, leaving two non-conformal
interfaces. If we treat the non-conformal interfaces as locked and permeable faults, we can effectively constraint the hanging nodes.

Since the singularity of the t=0 solution, we only compare the pressure starting from non-zero time. Fig. C.4 compares the model pressures,
along the radius at the domain bottom, against the analytical Mandel solution. This comparison suggests that the refined (non-conformal) model
produces the fluid pressure closer to the analytical solution, not only at the perimeter but across the whole radius. Note, due to the limitation of the
FE tool, we can only improve the agreement at cost of the problem size.

C.5. SCEC benchmark TPV102

Following the same procedure, one can solve TPV102 for the rate and state friction law. Here we compare the results against an FE code Pylith
(Bochev and Dohrmann, 2006) and a FD code DFM Dalguer and Day (2006).

Fig. C.1. Part of the finite element mesh used for validation of quasistatic viscoelastic relaxation. Colors represent fault parallel displacements, at t=0 years, provided by Ali (2014).
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Fig. C.5 compares the waveforms recorded at the station 1, 6 km off the fault plane, 12 km off the epicenter along the strike (y) direction.
Fig. C.5 compares the waveforms recorded at the station 2, 9 km off the fault plane, aligned with the epicenter along the normal (x) direction.

Due to symmetry, the normal (x) and vertical (z) components are almost zero Fig. C.6.
Fig. C.7 compares the rupture front contours. Again, both waveforms and rupture contours suggest that Defmod agree with the FD code DFM

better than with the FE code Pylith.

Fig. C.3. Mesh with two non-conformal interfaces used for duplicating the cylindrical
Mandel solution.

Fig. C.2. Deformation in the strike direction at the surface, along the rout perpendicular
to the fault, upper: comparison between Defmod, Okada and Relax; lower: comparison
between Defmod and Abaqus provided by Ali (2014).

Fig. C.4. Pressure along the radius of the bottom by conformal and non-conformal

Fig. C.5. SCEC TPV102 waveform comparison, station 1, velocity in x, y, z directions.
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