

Jamming transition and emergence of fracturing

In wet granular media

ERL Annual Meeting

Yue (Olivia) Meng¹, Bauyrzhan K. Primkulov¹, Zhibing Yang², Fiona Kwok³, Ruben Juanes¹

- 1. Department of Civil and Environmental Engineering (CEE), MIT
- 2. State Key Laboratory of Wat. Resour. and Hydropower Eng. Sci., Wuhan University
- 3. Department of Civil Engineering, HKU

Experiments phase diagram: wettability and granular fracture

Trojer et al. (in review).

Experiments phase diagram: wettability and granular fracture

Trojer et al. (*in review*).

Experiments phase diagram: wettability and granular fracture

Coupling of multiphase flow and grain mechanics

Discrete element modeling (DEM) framework:

Simulate particle interactions solving Newton's law of motion

$$m_i \ddot{\mathbf{x}}_i = \sum_j \mathbf{F}_{ij} \qquad \mathbf{I}_i \ddot{\theta}_i = \sum_j \mathbf{M}_{ij}$$

Define dual networks: grain-contact network and pore network

Two-way coupling:

- Pressure (from both fluids) exert forces on particles
- Particle rearrangement causes volume and pressure changes

Primkulov et al. *JFM* (2019). Primkulov et al. *PRF* (2018).

Simulation setup: frictional granular pack

- Contact angle θ = 140° (drainage) 90° (neutral) 46° (imbibition)
- Initial packing density $\phi_0 = 0.68$ (loose) 0.84 (dense)
- Coefficient of friction $\mu = 0.3$
- Ca^{*} = 0.5, Q = 4.29 × 10⁻¹¹ m³/s $\rightarrow \Delta P_{viscous} \approx 0.001 \Delta P_{capillary} \rightarrow capillary-dominated regime$

Evolution of interface morphology

 $\phi_0 = 0.77$

What causes the transition from cavity expansion to fracturing?

□ The injection pressure by itself, or packing fraction by itself, do not explain the transition

□ We hypothesize that this is akin to a phase transition from liquid-like to solid-like behavior

\rightarrow A jamming transition

Can be characterized by the mean contact number Z or the mean particle stress P

(Majmudar et al., PRL 2007)

Fracture initiation at the jamming transition

Jamming transition: force chains "lock-in" ?

force chain network at jamming transition

□ Jamming transition: the system reaches "mechanical stability": force chains "lock-in"

Trajectories in phase space (p_{inj} , $1/\phi$): different initial packings

Arrowise Security Security For all (θ, ϕ_0) collapse on a single line in $(p_{inj}, 1/\phi)$ -space

Phase diagram of jamming for wet granular media

Y. Meng et al., Physical Review Research (2020)

