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Major Challenge — Hidden Geothermal Systems
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Productive wells commonly proximal
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- 40% of known systems blind

© Estimated 75% of all systems hidden
* Significant drilling risk
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Need high-quality geologic and
geophysical data to elucidate surface and
subsurface to permit development of
better conceptual models




Challenges in Applying Machine Learning to Geothermal Exploration

* Some geophysical techniques do not work or are
too expensive

* e.g. Active seismic

* Few training sites
* Can lead to overfitting
* Need both positive and negative sites
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 Mix of data types: s

 Numerical variables (temp, distance to fault, gravity
values)

e Categorical variables (mineral assemblage, rock type)
* Ordinal variables (size of feature)
* Variation in resolution or uncertainty

 Some features not continuous
* Requires special treatment to avoid bias
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Example Numerical and Categorical Features for
Nevada Study Area

Categorical: Structural Setting
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Site Classification Problem

* A potential geothermal site is associated with

- Aclass y:
B {1, if the site is a positive prospect }
Y= 0, if the site is a negative prospect
- A feature vector x = (x4, X5 ... ... ) containing geological, geophysical and

geochemical measurements/information

- The Prediction Problem
- Given x, what is the probability that the siteisy =1vs.y =0
- e.g. infer Prob{y|x} (and its uncertainty)

- The Decision problem

- Given Prob{y|x} and its uncertainty, decideify =1ory =0
(considering mis-calculation risks, etc.)

- We focus on the Prediction problem



Fully-Connected
Network

Parameterize the probability of a positive
site with a multilayer neural network, P:

p & Prob(y = 1|x) = P(x,y)
where
X = Neural Network input
p = Neural Network output

& (w, b) = Neural Network
weights and biases

Regularize by limiting size of weights
and/or biases to limit overfitting and
prevent small number of nodes from
dominating
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Dark gray on left are 10 input features
Light gray circle on right is output

Blue are 16 neurons in each of 2 hidden layers
(biases)

Gray lines are connections (weights)




Traditional Machine Learning Approach

* The prediction problem reduces to inferring y using training data from sites with
known class

* A traditional (deterministic) Neural Network finds a single, optimal value of y,
e.g. the maximum likelihood estimate:

YmL = arg maxyL(D;y)
* The Trained Neural Network calculates, for any x,
p — P(x, YML)

* Our algorithm for likelihood maximation initializes y to a random seed



Problem: Variability with Multiple Runs

ANN model 1
“ L=

e Ran 10 test models with
differing seeds

T
06
S]
>
£
a
©
040
o

e
a

proBability 01?(+)

* Top two images: models
1 and 5 represent
extreme variability

ANN Fairway 10 trials
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e Lower left: mean of 10
runs

e Lower right: standard
deviation of 10 runs
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Bayesian Approach

* A Bayesian Neural Network applies Bayesian inference with the
training data to determine a posterior probability distribution on y

* Qur training algorithm uses the Variational Bayes method to find an
approximation to the posterior distribution on y

* Tradeoff model complexity with fitting of training data

* controlled by regularization parameter a chosen based on estimate of
number of degrees of freedom

* We sample the distribution of y in the network to get a posterior
probability distribution on p



Bayes Approach: Training Curves

100 U b s b ab i s el it AN T T T T L I S

e 7 g o O A A

. m&uwmmmmmﬁw i B g8 3 Overfit Data
b Wi 1' DAl *M“L' m ﬂ W” ) ’1“ ’ k'h l AL |' "“'f “M‘Jl " 'J‘ M ‘,ﬁ,ul,_r” “_“‘ A

o 0 g l' L i ‘.
3 " | L iy *1!'* iy f‘lf L rfv*‘w Mnr‘n *hp ik "-.\rn.
s | | ~
8 70 | |
r i

2 \ Increasing
g | | NN model

00 ‘ — a=05/]]

[ No Classification —— -1 complexity
o0 "}“'.:f,rw S S ' Z:i 1
' | ! —_— =9
| — a=55 \ 4
10 3
0 500 1000 1500 2000 2500

epoch



10

Results Using Bayesian Network

BNN Model 10

e Ran 10 test models with
differing seeds
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* Top two images:
Maximum variability
among multiple runs

e Lower left: mean of 10
runs

e Lower right: standard
deviation of 10 runs




Posterior Probabilities from Bayesian Approach
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Follow-On Work

e Differing approaches for geothermal

* Currently use positive and negative
geothermal sites

* Modify positive to be more general — e.g.
temperature at depth; production rate,
reservoir lifetime

e Convolutional Neural Network
* Take advantage of data spatial information
Find sites that are most like known
geothermal sites (work underway)
* Develop approach for using categorical
data
* Account for uncertainty in input data

* Use GAN

GeoTherm-GAN

* Deep conditional convolutional
GAN

* Generate probabilistic
geothermal site maps

Input

(z,y) G(z]y)
D(xly)
Data

(% y)
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Conditional GAN G(z]y) create fake geothermal site
and physical map pairs {x*,y}

z _ y

Sliding windows create real geothermal site
and physical map pairs {x,y} D(x]y)
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Follow-On Work

* Application to site selection for

CO, sequestration
* Required characteristics

Trapping mechanism
Caprock integrity

Seismic risk

Reservoir capacity
Maximum safe injection rate
Risk to water table

Source of CO,

13

BEST PRACTICES:

orage Pro
2017 REVISED EDI[ION
DOE/NETL-2017/1844 n - \
F

N=TL

NATIONAL ENERGY TECHNOLOGY LABORATORY

Albany, OR » Anchorage, AK » Houston, TX » Morgantown, WV » Pitisburgh, PA ‘i:é:‘;ENERGY |f;g;fé’:ergy
{  Potential ; : A
, Sub-Regions /  Basin Selected Potential Qualified
& 4 Sites

Areas

~ ’
~ "
S UK o

——/ Potential !

\, Sub-Regions /

i Potential :
\, Sub-Regions / Site Ready for

Characterization Permitting

Site Selection

Site Screening

Figure 1.2: lllustration of the Relationship Between Scale of Investigation
and Major Steps in Process of Finding and Developing Qualified Sites



Investigate sites for CO, Storage

 Start with existing data

. £20 Sites i
+ USGS datasets of regional _02 Storage Capacity of 20 Sites in US

geophysics TR
* Geothermal databases ‘
* Databases compiled for CO, 9 i s =/
sites b ke < AN

* Regional partnerships
* DOE-sponsored studies

e US Array tomography studies
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* Sites identified and tested Sy
* Regi O n a I pa rt n e rS h i pS sedimentary basins . footprint of trapped O
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* Include EOR sites?
Michael L. Szulczewski, Christopher W. MacMinn, Howard J. Herzog,

and Ruben Juanes, Lifetime of carbon capture and storage as a
climate-change mitigation technology, PNAS,
www.pnas.org/cgi/doi/10.1073/pnas.1115347109, 2012



http://www.pnas.org/cgi/doi/10.1073/pnas.1115347109
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Framework for Additional Work

* Current geothermal work is near completion
» Paper(s) being prepared
e Continue geothermal work with industrial partner(s)

* Explore enhancements to current methodology
* Apply to different regions where data are available

* Initiate CO, work with industrial partner(s) through ERL

16
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Bayesian Approach

* A Bayesian Neural Network applies Bayesian inference to determine a posterior
probability distribution on y:
f(y|D) = "Bayes Rule”

* For any x, the Bayesian Neural Network transforms f (y|D) to a probability
distribution on p:
f(p|x) = “transformation of f (y|D)”

Tradeoff model complexity with fitting of training data using regularization parameter
chosen based on estimate of number of degrees of freedom

L(D,y) = aKL[qW)||IPY)] +E

Where KL[q(Y)||P(y)] is the Kullback-Leibler Divergence representing model complexity,
q(y) is the probability distribution on y, is the prior distribution on y, E represents the
data misfit



Numerical Features for Nevada Study Area™
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* Some sampling bias
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Categorical Features (Favorable Structural Setting) *

* 450 systems analyzed; ~250
catalogued

) " Major Normal Fault
\ Segment

* Most fields not on mid-
segments of major faults

* Most on less conspicuous
Quaternary normal faults

ation Zone @ Displacemen t Transfer ranstensional Pull-Apart
ault Dip Domains Zone Along a Strike-Slip

Fault Zone @ Geothermal Upwelling

* Higher temp systems =

generally on faults <750 ka

* Hybrid settings most
productive

Faulds et al., DOE Project Review 2020



