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Major Challenge – Hidden Geothermal Systems 1



Challenges in Applying Machine Learning to Geothermal Exploration 2

• Some geophysical techniques do not work or are 
too expensive
• e.g. Active seismic

• Few training sites
• Can lead to overfitting
• Need both positive and negative sites

• Mix of data types:
• Numerical variables (temp, distance to fault, gravity 

values)
• Categorical variables (mineral assemblage, rock type)
• Ordinal variables (size of feature)
• Variation in resolution or uncertainty

• Some features not continuous
• Requires special treatment to avoid bias



Example Numerical and Categorical Features for 
Nevada Study Area
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Categorical: Structural SettingNumerical



Site Classification Problem
• A potential geothermal site is associated with

- A class 𝑦:
𝑦 = 1, if the site is a positive prospect

0, if the site is a negative prospect

- A feature vector 𝒙 = (𝑥!, 𝑥"……) containing geological, geophysical and 
geochemical measurements/information

- The Prediction Problem
- Given 𝒙, what is the probability that the site is 𝑦 = 1 vs. 𝑦 = 0
- e.g. infer Prob 𝑦 𝒙 (and its uncertainty)

- The Decision problem
- Given Prob 𝑦 𝒙 and its uncertainty, decide if 𝑦 = 1 or 𝑦 = 0

(considering mis-calculation risks, etc.)

- We focus on the Prediction problem

4



Fully-Connected 
Network
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Parameterize the probability of a positive 
site with a multilayer neural network, 𝑃:

𝑝 ≝ Prob 𝑦 = 1 𝒙 = 𝑃 𝒙, 𝜸
where 
𝒙 = Neural Network input
𝑝 = Neural Network output
𝜸 ≝ 𝒘, 𝒃 = Neural Network 

weights and biases

Regularize by limiting size of weights 
and/or biases to limit overfitting and 
prevent small number of nodes from 
dominating

• Dark gray on left are 10  input features

• Light gray circle on right is output

• Blue are 16 neurons in each of 2 hidden layers 
(biases)

• Gray lines are connections (weights)



Traditional Machine Learning Approach

• The prediction problem reduces to inferring 𝜸 using training data from sites with 
known class

𝐷 = 𝑥! , 𝑦! , 𝑖 = 1,2……𝑁

• A traditional (deterministic) Neural Network  finds a single, optimal value of 𝜸, 
e.g. the maximum likelihood estimate:

𝜸"# = arg𝑚𝑎𝑥𝜸ℒ(𝐷; 𝜸)

• The Trained Neural Network calculates, for any 𝒙,
𝑝 = 𝑃(𝒙, 𝜸"#)

• Our algorithm for likelihood maximation initializes 𝜸 to a random seed
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Problem: Variability with Multiple Runs 7

• Ran 10 test models with 
differing seeds
• Top two images: models 

1 and 5 represent 
extreme variability
• Lower left: mean of 10 

runs
• Lower right: standard 

deviation of 10 runs



Bayesian Approach
8

• A Bayesian Neural Network applies Bayesian inference with the 
training data to determine a posterior probability distribution on 𝜸
• Our training algorithm uses the Variational Bayes method to find an 

approximation to the posterior distribution on 𝜸
• Tradeoff model complexity with fitting of training data

• controlled by regularization parameter 𝛼 chosen based on estimate of 
number of degrees of freedom

• We sample the distribution of 𝜸 in the network to get a posterior 
probability distribution on 𝑝



Bayes Approach: Training Curves 9

Overfit Data

No Classification

Increasing 
NN model 
complexity



Results Using Bayesian Network 10

• Ran 10 test models with 
differing seeds
• Top two images: 

Maximum variability 
among multiple runs
• Lower left: mean of 10 

runs
• Lower right: standard 

deviation of 10 runs



Posterior Probabilities from Bayesian Approach 11



Follow-On Work

• Differing approaches for geothermal
• Currently use positive and negative 

geothermal sites
• Modify positive to be more general – e.g. 

temperature at depth; production rate, 
reservoir lifetime

• Convolutional Neural Network
• Take advantage of data spatial information

• Find sites that are most like known 
geothermal sites (work underway)
• Develop approach for using categorical 

data
• Account for uncertainty in input data
• Use GAN
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GeoTherm-GAN
• Deep conditional convolutional 

GAN
• Generate probabilistic 

geothermal site maps
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Follow-On Work

• Application to site selection for 
CO2 sequestration
• Required characteristics

• Trapping mechanism
• Caprock integrity
• Seismic risk
• Reservoir capacity
• Maximum safe injection rate
• Risk to water table 
• Source of CO2
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BEST PRACTICES: Site Screening, Site Selection, and Site Characterization for Geologic Storage Projects18

1.0 INTRODUCTION

Steps in the Process
The first step is Project Definition (Chapter 2), which 
should be conducted prior to beginning exploration 
activities to establish an initial plan for overall project 
management and a detailed plan for subsequent stages, 
including contingencies. As part of project definition, the 
developer establishes a set of technical and economic 
criteria that can be used to help rank potential candidates 
identified at different stages in site development.

Following project definition, the stages in site development 
are organized around decision points related to narrowing the 
scale of investigation from very large regional assessments 
down to specific sites that might be developed for 
commercial storage. Figure 1.2 illustrates the relationship 
between the scale of investigation and the major steps 
in the process of finding and developing Qualified Sites. 
Site Screening (Chapter 3) provides guidelines for large-
scale investigations focused on regions, called Potential 
Sub-Regions, to determine a list of prospective areas, 
called Selected Areas, within those regions. Site Selection 
(Chapter 4) provides guidelines for investigation of the 
Selected Areas to determine a list of sites, called Potential 
Sites, that are worthy of additional site-specific investigations. 
Site Characterization (Chapter 5) provides guidelines for 
site-specific investigation, and possible investment in new 
data, to determine which Potential Sites might be considered 
to be Qualified Sites for commercial investment. This BPM 
provides guidance on characterization of the geology of 
sites. But, it goes beyond geology to provide a guide for 
considering the broader set of factors that determine the 
commerciality of a potential carbon dioxide (CO2) geologic 
storage site.

Finding and Developing Qualified Sites
Each stage in the site development and evaluation process 
is subdivided into components and accompanying analyses. 
Each of the components contains several elements to 
consider during the analyses. Each stage builds on the 
previous one, paring down a large region into a select few 
sites based on identified component evaluations. It is a 
process that is designed to: 

• Establish that the site has the resources to accept 
and safely store the anticipated quantity of CO2 at the 

desired injection rate for the storage project

• Provide input data to models required to predict site 
performance in terms of pressure change and CO2 
plume evolution

• Minimize the probability of adverse effects on the 
environment

• Identify and address any potential regulatory, subsurface 
ownership, site access, and pipeline issues

• Ensure the site has the capability to meet the performance 
standards established for the project, such as operational 
efficiency, reliability, and safety

• Ensure alignment of national, regional, and local social, 
economic, and environmental interests

The manual is written with an eye to the future, when carbon 
capture and storage (CCS) becomes commercial, and 
subsurface storage space will be considered a resource. 
Given the many similarities, both technical and non-technical, 
between exploration and production of hydrocarbons and 
exploration and storage of CO2, it is plausible to suggest 
that there would be similarities in approaches to resource 
management. An important assumption underlying the 
structure of the BPM is that the steps taken in development 
of commercial CCS projects, and the process by which the 
maturity (readiness for commercial injection) of a project is 

Figure 1.2: Illustration of the Relationship Between Scale of Investigation 
and Major Steps in Process of Finding and Developing Qualified Sites
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Investigate sites for CO2 Storage
• Start with existing data
• USGS datasets of regional 

geophysics
• Geothermal databases
• Databases compiled for CO2

sites
• Regional partnerships
• DOE-sponsored studies

• US Array tomography studies

• Sites identified and tested
• Regional partnerships
• Those identified by industry
• Include EOR sites?
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and opposite slope until returning to the current rate (Fig. 3A).
Although future CO2 production trends will likely be complex, we
use this simple model because it captures the essential features
expected in future trends: an increase in the rate of production as
energy demand grows and fossil fuels continue to supply the en-
ergy and then a decrease as low-emissions energy sources begin to
replace fossil fuels. We assume that the CO2 injection rate in each
aquifer also follows this ramp-up, ramp-down trend.
This CO2 production model has two key parameters: the slope

of the linear increase, Gp, and the time at which production
returns to the current rate, T. On the basis of data from the
electricity sector in the United States over the past four decades,
we estimate the recent growth rate in production to be Gp ∼ 45
million tons of CO2 per year per year (Mt/y2) (24). This rate has
slowed recently (∼30 Mt/y2 over the past two decades or ∼20
Mt/y2 over the past decade), in part due to growth coming more
and more from gas-fired plants instead of coal-fired plants.
However, we choose the higher historic rate on the basis of our
expectation that the deployment of CCS and the abundance of
coal will promote the construction of coal-fired plants at rates
similar to those in previous decades and that those plants will be
capture ready. The variable T describes different trajectories of
the CO2 production rate, which we call production pathways in
analogy to emission pathways (25).

We define the CO2 storage rate to be a constant fraction, r, of
the surplus CO2 production rate or the rate at which CO2 is
produced above the current rate. As a result, storage pathways
exhibit the same shape as production pathways: The rate of
storage increases linearly, reaches a maximum at the same time
production reaches a maximum, and then decreases linearly,
returning to zero when production returns to the current rate.
The storage demand is the cumulative mass of CO2 stored over
an entire storage pathway: ðr  = 4ÞGpT2 (Fig. 3B). This formula
indicates that r can also be used to capture uncertainty in the
production growth rate, Gp.
The time span over which CCS can be extended is the time for

which the storage supply curve exceeds the storage demand
curve. The storage demand curve is concave, growing approxi-
mately as T1/2 for short injection times when most aquifer ca-
pacity is pressure-limited, and flattening for long injection times
when most aquifer capacity is migration-limited (Fig. 4A). The
time at which the curves intersect corresponds to the longest
storage pathway for which there is sufficient storage supply. If
the storage demand is all of the surplus CO2 produced (r = 1),
the demand curve crosses the supply curve at T = 120 y, with
a range of T = 95–165 y (Fig. 4B). If the storage demand is one-
half of CO2 produced (r = 0.5), the intersection occurs at T =
190 y, with a range of T = 145–250 y. If the storage demand is
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Fig. 2. We estimate the nationwide storage capacity from 20 arrays of injection wells in 11 aquifers. We select these aquifers because they are large, exhibit
few basin-scale faults, and have been relatively well characterized (31). This map shows the locations of the aquifers and their storage capacities for an
injection period of 100 y (capacities for different injection periods are in SI Appendix, Table S29). Capacities in italic boldface type are constrained by pressure;
otherwise, they are constrained by migration. The map also shows the ultimate CO2 footprints for those capacities, which correspond to the areas infiltrated
by migrating, free-phase CO2 before it becomes completely trapped.

Szulczewski et al. PNAS | April 3, 2012 | vol. 109 | no. 14 | 5187
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Michael L. Szulczewski, Christopher W. MacMinn, Howard J. Herzog, 
and Ruben Juanes, Lifetime of carbon capture and storage as a 
climate-change mitigation technology, PNAS,
www.pnas.org/cgi/doi/10.1073/pnas.1115347109, 2012

CO2 Storage Capacity of 20 Sites in US

http://www.pnas.org/cgi/doi/10.1073/pnas.1115347109
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Framework for Additional Work
• Current geothermal work is near completion
• Paper(s) being prepared

• Continue geothermal work with industrial partner(s)
• Explore enhancements to current methodology
• Apply to different regions where data are available

• Initiate CO2 work with industrial partner(s) through ERL

16



Bayesian Approach 17

Tradeoff model complexity with fitting of training data using regularization parameter
chosen based on estimate of number of degrees of freedom

• A Bayesian Neural Network applies Bayesian inference to determine a posterior 
probability distribution on 𝜸:

𝑓 𝜸 𝐷 = ”Bayes Rule”
• For any 𝒙, the Bayesian Neural Network transforms 𝑓 𝜸 𝐷 to a probability 

distribution on 𝑝:
𝑓 𝑝 𝒙 = “transformation of 𝑓(𝜸|𝐷)”

ℒ 𝐷, 𝜸 = 𝛼𝐾𝐿[q(𝛄)||𝒫 𝜸 ] + 𝐸

Where 𝐾𝐿[q(𝛄)| 𝒫 𝜸 is the Kullback-Leibler Divergence representing model complexity,  
𝑞 𝜸 is the probability distribution on 𝜸,  is the prior distribution on 𝜸, 𝐸 represents the 
data misfit



Numerical Features for Nevada Study Area* 18

* Some sampling bias



Categorical Features (Favorable Structural Setting) 19

• 450 systems analyzed; ~250 
catalogued

• Most fields not on mid-
segments of major faults

• Most on less conspicuous 
Quaternary normal faults

• Higher temp systems 
generally on faults <750 ka

• Hybrid settings most 
productive

Faulds et al., DOE Project Review 2020


