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SUMMARY

Recent development of continuous recording systems used in
industry, computational power, and very dense recording sys-
tem makes seismic interferometry with ambient noise data an
interesting tool to estimate structural information. To over-
come the complexities of ambient noise, spectral normaliza-
tion (e.g., whitening) is often used. Here I study different
spectral normalization methods, such as crosscorrelation, de-
convolution and crosscoherence, using numerical experiments
and stationary-phase approximation. In the ideal situation of
noise distribution, direct waves are accurately observed for all
methods, but scattered waves are not. Especially, coda waves
contain a lot of pseudo arrivals. Therefore, if we do not pay
attention for the pseudo arrivals, we would use these waves for
structural imaging and monitoring and create artifacts. Charac-
terization of such waves using stationary-phase analyses sheds
light on using and/or suppressing them.

INTRODUCTION

Seismic interferometry and ambient-noise correlation analyses
have been used for Green’s function retrieval, seismic tomog-
raphy and time-lapse analyses (e.g., Wapenaar et al., 2010a,b).
Most studies of tomography use fundamental-mode Rayleigh
waves propagating directly from one receiver to the others (e.g.,
Shapiro et al., 2005). Love waves, higher-mode surface waves,
and body waves have been also extracted from ambient noise
and used for understanding the subsurface structure (Nakata
et al., 2015; Czarny et al., 2019). For time-lapse analyses,
due to the high sensitivity to the medium changes, multiply-
scattered waves (e.g., coda waves) are often used, and one ap-
plies coda-wave interferometry to measure the subsurface ve-
locity changes (Snieder et al., 2002; Brenguier et al., 2008).
In addition, reflected waves are extracted at variety of scales
(Ruigrok et al., 2008; Draganov et al., 2009; Nakata et al.,
2011a; Girard and Shragge, 2020; Brenguier et al., 2019). Re-
cent development of continuous recording systems used in in-
dustry, computational power, and very dense receiver arrays
makes seismic interferometry with ambient noise data an in-
teresting tool to map subsurface structure.

Theoretically, we can extract Green’s functions between re-
ceivers by crosscorrelation (Wapenaar and Fokkema, 2006).
Based on representation theorems, the assumptions we need to
satisfy are energy equipartition of the ambient noise, far away
sources from receivers or everywhere, and lossless media. As
an ideal situation, I only consider the case, which holds these
assumptions and will find the effects of frequency normaliza-
tion. Because ambient noise is complex, we need to apply
pre-processing to the continuously observed data. The pre-
processing contains, for example, demean and detrend, stack-
ing, spectral whitening, one-bit normalization, and removal of
impulsive signals such as earthquakes. The idea of the pre-
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Figure 1: Geometry of source surface and receivers with con-
vention of angles. The red dot shows the scatterer. The unit
of the locations is meters. The green and yellow arcs are the
source locations used for summation below.

processing partly comes from the fact that the nature of the
ambient noise does not satisfy the assumptions in the theoreti-
cal derivations. However, as I present here, spectral whitening
and other frequency normalizations can general spurious mul-
tiples even under the ideal noise distribution.

Here, I first review different normalizations. I focus on cross-
correlation, deconvolution and spectral whitening (crosscoher-
ence), but not one-bit normalization. We need statistical anal-
yses for evaluating one-bit normalization, and for the sake of
simplicity, I put this as a near-future topic. Next, I present a
simple numerical example for problem statement. Then I use
a stationary-phase approximation for different normalizations
and discuss unphysical arrivals.

DEFINITION OF THREE NORMALIZATIONS

For ambient-noise correlation, I discuss three different frequency
normalization techniques throughout this study: crosscorrela-
tion, deconvolution and crosscoherence. To focus on the effect
of the normalization, I assume that the noise sources are uni-
formly distributed, uncorrelated, and far from receivers. Let us
consider u(rA,r) and u(rB,r) as frequency-domain wavefields
excited at location r and recorded at locations rA and rB, re-
spectively. The locations are defined as

rA,B =




xA,B
0

zA,B


 = rA,B




sinθA,B
0

cosθA,B


 , r =




x
y
z


 = r




sinθcosψ
sinθ sinψ

cosθ




in the spherical coordinate (Figure 1). Crosscorrelation (CC)
in the frequency domain is given by

CC =


∑

S
u(rA,r)






∑

S ′
u(rB,r′)




∗
, (1)

where ∗ is the complex conjugate. When we assume that the
phases of the noise sources are random and their source time
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Table 1: Comparison of the terms in equations 7–9. The Phase
and Term ID columns show the phase of each term and sequen-
tial term numbers.

Phase Term ID xcor decon coher
GA0G∗B0 T1 CC1 DE1 CH1
GAS G∗B0 T2 CC2 DE2 CH2
GA0G∗BS T3 = T ∗2 |A↔B CC3 CH3
GAS G∗BS T4 CC4 CH4

GA0GBS (G∗B0)2 T5 DE5 CH5
(GA0)2G∗AS G∗B0 T6 = T ∗5 |A↔B CH6
GAS GBS (G∗B0)2 T7 DE7 CH7
(GA0)2G∗AS G∗BS T8 = T ∗7 |A↔B CH8
GA0GB0(G∗BS )2 T9 CH9
(GAS )2G∗A0G∗B0 T10 = T ∗9 |A↔B CH10

GA0(GBS )2(G∗B0)3 T11 DE11 CH11
(GA0)3G∗B0(G∗AS )2 T12 = T ∗11|A↔B CH12

(GA0)2GBS (G∗B0)2G∗AS T13 CH13

T j = T ∗i |A↔B means that T j is equal to the complex conjugate
of Ti with exchanging receivers A and B.

functions are uncorrelated, equation 1 simplifies

CC =
∑

S
u(rA,r)u∗(rB,r). (2)

This is a strong assumption but satisfied reasonably well if ob-
servation is long enough (Snieder, 2004). When the sources
are densely and uniformly distributed at a surface dS , the sum-
mation over the sources can be replaced by an integration and
equation 3 becomes

CC = n
∮

u(rA,r)u∗(rB,r)dS = nr2
∮

u(rA,r)u∗(rB,r)dΩ,

(3)

where n is the number of sources per unit surface area. For
the last equal, I further assume the source distribution is at a
sphere and conver the surface integral into the angle integral.
Similarly, deconvolution (DE), and crosscoherence (CH) are
given by

DE = nr2
∮

u(rA,r)
u(rB,r)

dΩ = nr2
∮

u(rA,r)u∗(rB,r)
|u(rB,r)|2 dΩ (4)

CH = nr2
∮

u(rA,r)u∗(rB,r)
|u(rA,r)||u(rB,r)|dΩ, (5)

respectively (Nakata et al., 2011b). Because the denominators
for deconvolution and crosscoherence contain only amplitude
information, and the numerators are the same as the term of
crosscorrelation, the differences between these computations
can be considered as different frequency normalization strate-
gies. Therefore, the phases for these three techniques are iden-
tical. Interestingly, these differences in the amplitude modulate
our signals and generate pseudo arrivals.

Decomposition of unperturbed and scattered waves
In general, the wavefield contains both unperturbed (direct;
G0) and scattered (GS ) Green’s functions as

u(rA,r) =W(r) {G0(rA,r)+GS (rA,r)} , (6)

for receiver A and similar for receiver B. In equation 6, W(r)
is a source function. For brevity, I use the simple notation
below and rewrite equation 6 as uA =W(GA0+GAS ). Inserting
equation 6 into equations 3–5, I obtain

CC = nr2
∮
|W |2



GA0G∗B0︸!!!!︷︷!!!!︸
CC1

+GAS G∗B0︸!!!!︷︷!!!!︸
CC2

+GA0G∗BS︸!!!!︷︷!!!!︸
CC3

+GAS G∗BS︸!!!!!︷︷!!!!!︸
CC4




dΩ (7)

DE = nr2
∮




GA0G∗B0
|GB0 |2︸!!!!!︷︷!!!!!︸
DE1

+
GAS G∗B0
|GB0 |2︸!!!!!!︷︷!!!!!!︸
DE2

−
GA0GBS (G∗B0)2

|GB0 |4︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸
DE5

−
GAS GBS (G∗B0)2

|GB0 |4︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸
DE7

+
GA0(GBS )2(G∗B0)3

|GB0 |6︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
DE11




dΩ

(8)

CH = nr2
∮




(
1− 1

4
|GAS |2
|GA0 |2

− 1
4
|GBS |2
|GB0 |2

) GA0G∗B0
|GA0 ||GB0 |

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
CH1

+
1
2

GAS G∗B0
|GA0 ||GB0 |︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸
CH2

+
1
2

GA0G∗BS
|GA0 ||GB0 |︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸
CH3

+
1
4

GAS G∗BS
|GA0 ||GB0 |︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸
CH4

− 1
2

GA0GBS (G∗B0)2

|GA0 ||GB0 |3︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
CH5

− 1
2

(GA0)2G∗AS G∗B0
|GA0 |3 |GB0 |︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
CH6

− 1
4

GAS GBS (G∗B0)2

|GA0 ||GB0 |3︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
CH7

− 1
4

(GA0)2G∗AS G∗BS
|GA0 |3 |GB0 |︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
CH8

− 1
8

GA0GB0(G∗BS )2

|GA0 ||GB0 |3︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
CH9

− 1
8

(GAS )2G∗A0G∗B0
|GA0 |3 |GB0 |︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
CH10

+
3
8

GA0(GBS )2(G∗B0)3

|GA0 ||GB0 |5︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸
CH11

+
3
8

(GA0)3G∗B0(G∗AS )2

|GA0 |5 |GB0 |︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸
CH12

+
1
4

(GA0)2GBS (G∗B0)2G∗AS
|GA0 |3 |GB0 |3︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
CH13




dΩ,

(9)

where I use Taylor expansions for deconvolution and crossco-
herence similar to equations 3 and 15 in Nakata et al. (2013)
and show up to the second-order scattered terms. Note that the
source term W is canceled for deconvolution and crosscoher-
ence as discussed in Nakata et al. (2011a). Based on Table 1,
in terms of the phase, equations 7–9 have total 13 unique terms
and crosscoherence contains all of them.

NUMERICAL EXPERIMENT

I first use a finite-difference wavefield modeling to visualize
the effects of different normalization defined in equations 3–5.
The source-receiver geometries are defined in Figure 1. In the
numerical simulation, total 720 sources are located along the
circle with a radius of 750 m with an even spacing and excited
individually to satisfy the condition of no correlation between
different sources. This is an ideal situation for seismic inter-
ferometry to extract the Green’s function between receivers as
demonstrated below. For the source function, I use the Ricker
wavelet with central frequency of 50 Hz. The calculation area
is sufficiently large (-1750 – 1750 m) with additional 300-m
absorbing boundaries on each side to avoid having numerical
reflected waves. I apply seismic interferometry with differ-
ent normalization (equations 3–5) to the synthetic data. I also
model the wave propagation from receiver B to receiver A to
check interferometry results.

As expected, I can extract accurate Green’s function for both
direct and scattered waves using crosscorrelation (Figure 2a,d).
Signals around -0.1 s on the green and yellow arcs (highlighted
by CC4) are canceled each other because of the generalized op-
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Figure 2: Wavefields after applying seismic interferometry: (a) crosscorrelation (equation 3), (b) deconvolution (equation 4), and
(c) crosscoherence (equation 5). The amplitudes are clipped independently in each panel. Also an amplitude gain according to
the square of time is applied to enhance the small signals in later time. Stationary phases for the terms in Table 1 are highlighted
by white arrows. The green and yellow bars illustrate the location of sources shown in Figure 1. (d–f) Summation of wavefields
over sources for crosscorrelation, deconvolution, and crosscoherence, respectively. For black, green and yellow lines, all sources,
sources on the green arc in Figure 1, and sources on the yellow arc are used, respectively. The red line shows the wavefield modeled
by the case when we put a source at the location of receiver B and record at receiver A. Amplitudes are normalized to make the
signal at 0.15 s as 1, and the same amplitude gain according to the time as the upper-row panels is applied.

tical theorem (Snieder et al., 2008). Deconvolution interferom-
etry, however, has no scattered waves in the negative time and
creates several pseudo (and unphysical) arrivals in later time
(Figure 2b,e). Similarly, crosscoherence interferometry pro-
duces pseudo arrivals as well (Figure 2c,f), although the am-
plitudes of such arrivals compared to direct waves are smaller
than those in the deconvolved interferometry. Because the am-
plitude of scattered waves in crosscoherence is also smaller
than the direct modeling, this normalization is efficient for
extracting direct waves, but not scattered waves. Because of
such pseudo arrivals, coda waves after seismic interferometry
with spectral normalization contain unphysical waves. In the
next section, with stationary-phase analyses, I will characterize
each phase in Figure 2, which would be useful for avoiding to
misinterpret such waves and designing filters to remove them.

STATIONARY-PHASE ANALYSIS

Following Snieder et al. (2008), I use stationary-phase approx-
imations to solve equations 7–9. When we have a scatterer at
the origin (0,0), the total 3D acoustic-wave Green’s function
from point r to rA can be defined as

Gtot(rA,r) =G0(rA,r)+GS (rA,r)

= − ρ

4π
exp(ik|r− rA|)
|r− rA|

− ρ

4π
exp(ikr)

r
f (r̂A,−r̂)

exp(ikrA)
rA

,

(10)

where ·̂ represents the wave direction and f (r̂A,−r̂) is the scat-
tering coefficient for the wave propagating from −r̂ to r̂A. Based
on the derivation in Wapenaar and Fokkema (2006) and ap-
proximation in their equation 30, I employ the condition that
sources are far from the receivers (r & rA,B). For brevity, I
consider the receivers which are at xA < xB and zA > zB. Be-
cause we already understand the effect of the source wavelet

W in the previous section, in the rest of this section, I as-
sume W = 1, which is a delta function in the time domain,
and u(rA,r) =Gtot(rA,r).

Crosscorrelation
The stationary-phase approximation of crosscorrelation (equa-
tion 7) has been discussed by Snieder et al. (2008) and Hal-
liday and Curtis (2009), and summarized by Nakata (2020).
After inserting equation 10 into equation 7, the crosscorrela-
tion becomes

CC = inρ
2k




G0(rA ,rB)
︸!!!!!!!︷︷!!!!!!!︸
CC1a

−G∗0(rB ,rA)
︸!!!!!!!!!︷︷!!!!!!!!!︸
CC1b

+Gs(rA ,rB)
︸!!!!!!!!!︷︷!!!!!!!!!︸
CC2a

−G∗s (rB ,rA)
︸!!!!!!!!!︷︷!!!!!!!!!︸
CC3a




+
nρ2 exp[ik(rA − rB)]

4πkrArB




i
2




f (r̂A ,−r̂B)
︸!!!!!!!︷︷!!!!!!!︸
CC2b

− f ∗(r̂B ,−r̂A)
︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸

CC3b




+
k

4π

∮
f (r̂A ,−r̂) f ∗(r̂B ,−r̂)dΩ

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
CC4




,

(11)

where the subscripts a and b in each term indicate the station-
ary points at ψ = 0 and ψ = π, respectively. Due to the general-
ized optical theorem, terms in the square bracket are canceled
(Snieder et al., 2008) (i.e., CC2b +CC3b = CC4).

Deconvolution
For the stationary-phase approximation to deconvolution inter-
ferometry, I insert equation 10 into equation 8. Based on Table
1, TermsDE5,DE7, andDE11 are unique compared to cross-
correlation and these terms are related to the pseudo arrivals in
Figure 2be. I demonstrate here the stationary-phase analysis
for term DE5, and the analyses for other terms are shown by
Nakata (2020).

Using equation 10,DE5 becomes

DE5 = −
∮

r|r− rB|2
rB|r− rA|

f (r̂B,−r̂)exp(ikL5)dΩ, (12)
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Figure 3: (a) The wave propagation of DE5 at the stationary
point. The black points (5a and 5b) illustrate the location of
stationary points. The red arrows indicate the ray path of the
wave. (b) Stationary-phase points (black dots) for all terms
shown in Table 1. The numbers next to the black dots show
the term ID, and a and b denote the two stationary points for
each term (ψ = 0 and π).

where

L5 = (2xB− xA)cosθ sinθ+ (2zB− zA)cosθ+ rB.

At the stationary phase (ψs, θs), the first derivatives of L5
should be zero, and hence

∂L5
∂ψ
= −(2xB− xA) sinψs sinθs = 0 (13)

∂L5
∂θ
= (2xB− xA)cosψs cosθs − (2zB− zA) sinθs = 0. (14)

From equation 13, two stationary phases exist at ψsa = 0 and
ψsb = π. I first consider ψsa = 0, and with equation 14, I ob-
tain tanθsa = (2xB − xA)/(2zB − zA), which indicates that the
angle of the stationary phase is not equal to the angle of ei-
ther receivers A or B, which are the case for Terms T2 and T3,
but the angle is related to the location of 2rB − rA. We define
r2B−A = 2rB − rA, and r2B−A for its distance. At this station-
ary point, L5 = r2B−A+ rB, r̂ = r̂2B−A. For the stationary-phase
analysis, we also need the second derivatives of L5;

∂2L5

∂ψ2 = −(2xB− xA) sinθs < 0

∂2L5

∂θ2 = −r2B−A < 0. (15)

Using equations 13–15 with the stationary-phase approxima-
tion, equation 12 becomes

DE5a =
2πir|r− rB|2

k|r− rA|
f (r̂B,−r̂2B−A)

exp(ik(r2B−A + rB))
rBr2B−A

,

(16)

and similarly for the other stationary-phase point (ψsb = π),

DE5b = −
2πir|r− rB|2

k|r− rA|
f (r̂B, r̂2B−A)

exp(ik(−r2B−A + rB))
rBr2B−A

.

(17)

This stationary-phase approximation reveals that the wavefield
DE5 has a longer ray path, and the stationary point is aligned
with the origin and points r2B−A (Figure 3a).

Based on the concept of the clamped boundary condition for
deconvolution interferometry (Snieder and Şafak, 2006; Vas-
concelos and Snieder, 2008; Nakata et al., 2013), the wavefield
DE5a can be considered as the wave propagating from receiver
B to the scatterer, scattered back to rB, and then scattered again
at rB to propagate to receiver A because of the change in the
boundary condition at rB. The distance of the ray path for this
wave is 2rB + |rB − rA| ≡ r′, which is different from L5 at the
stationary phase. When the scatterer, rA, and rB are aligning
linearly (e.g., 1D wave propagation), L5 and waveDE5a at the
stationary phase can be interpreted as the clamped boundary
wave. However in general, DE5a is equivalent to the wave
where we artificially put a receiver at r2B−A (Figure 3a).

When I solve terms DE7 and DE11 in with a stationary phase
approximation, equation 8 becomes

DE = N
[

2πi
ρk

G0(rA ,rB)− 2πi
ρk

G∗0(rB ,rA)

+
2πi
ρk

Gs(rA ,rB)+
i

2k
f (r̂A , r̂B)

exp(ik(rA − rB))
rArB

+
i

2k
f (r̂B ,− ˆr2B−A)

exp(ik(r2B−A + rB))
rBr2B−A

− i
2k

f (r̂B , ˆr2B−A)
exp(ik(−r2B−A + rB))

rBr2B−A

+
i

4krB
f (r̂A ,−r̂B) f (r̂B,−r̂B)

exp(ik(3rB + rA))
rArB

− i
4krB

f (r̂A , r̂B) f (r̂B , r̂B)
exp(ik(rA − rB))

rArB

− i
2krB

f 2(r̂B ,− ˆr3B−A)
exp(ik(r3B−A +2rB))

rBr3B−A
+

i
2krB

f 2(r̂B, ˆr3B−A)
exp(ik(−r3B−A +2rB))

rBr3B−A

]
,

(18)

where N is the total number of sources (N = 4πnr2). Note that
because the deconvolution interferometry does not have term
T3, the wave of DE2b is not canceled and shown as a pseudo
wave around -0.1 s in Figure 2e.

Crosscoherence
Next, I insert equation 10 into equation 9 and use the stationary-
phase approximation to solve each term in Table 1. After the
approximation, crosscoherence interferometry has 20 station-
ary phases (Figure 2c). Locations of the stationary points are
distributed at variety of points along the circle (Figure 3b). For
all the points, azimuthal angles (ψ) are either 0 (for points a)
or π (for points b).

DISCUSSION AND CONCLUSIONS

For seismic interferometry and ambient-noise correlation, spec-
tral normalization has been often used to stabilize the calcula-
tion. Such normalizations, however, produce pseudo waves
especially in later time in addition to the direct and scattered
waves that are explained physically. With the stationary-phase
approximation, I characterize all pseudo waves in deconvolu-
tion and crosscoherence interferometry. Because all stationary
points can be estimated, potentially we will be able to extract
information outside of the receivers; for example for term T5
(Figure 3a), the structural information along r2B−A can be ex-
tracted. In addition, because amplitudes of each term are also
revealed by this stationary-phase analysis, potentially we can
extract attenuation. Importantly, measurements of time-lapse
changes using coda waves of ambient-noise correlation can be
biased by such pseudo waves.


