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A B S T R A C T

Signal detection and extraction requires substantial manual parameter tuning at different stages in the processing
pipeline. Time-series data depends on domain-specific signal properties, necessitating unique parameter selection
for a given problem. The large potential search space makes this parameter selection process time-consuming and
subject to variability. We introduce a technique to search and prune such parameter search spaces in parallel and
select parameters for time series filters using breadth- and depth-first search strategies to increase the likelihood
of detecting signals of interest in the field of magnetospheric physics. We focus on studying geomagnetic activity
in the extremely and very low frequency ranges (ELF/VLF) using ELF/VLF transmissions from Siple Station,
Antarctica, received at Qu�ebec, Canada. Our technique successfully detects amplified transmissions and achieves
substantial speedup performance gains as compared to an exhaustive parameter search. We present examples
where our algorithmic approach reduces the search from hundreds of seconds down to less than 1 s, with a ranked
signal detection in the top 99th percentile, thus making it valuable for real-time monitoring. We also present
empirical performance models quantifying the trade-off between the quality of signal recovered and the algorithm
response time required for signal extraction. In the future, improved signal extraction in scenarios like the Siple
experiment will enable better real-time diagnostics of conditions of the Earth's magnetosphere for monitoring
space weather activity.
1. Introduction

We introduce new parallel optimization techniques for the detection
of signals injected into the Earth's magnetosphere. The application ad-
dresses a variety of interesting questions, such as improving an under-
standing of radiation-belt dynamics, monitoring space weather
conditions, and advancing scientific insight into the coupling dynamics
between the Earth and the Sun.

Signal detection and extraction is challenging for applications where
signal transmission occurs in noisy channels with interference. This is
further complicated in this application by interactions of interest be-
tween energetic particles and whistler-mode waves in the radiation belts
that modify wave behavior and particle populations (Harid et al., 2014a,
2014b; Streltsov et al., 2010; Li et al., 2015). These waves are generated
on Earth naturally, for instance by lightning, or artificially, such as by
power lines. We examine data from a controlled wave-particle interac-
tion experiment at Siple Station, Antarctica, where a dedicated trans-
mitter injected signals in the extremely and very low frequency ranges
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(ELF/VLF; 0.3–30 kHz) into the magnetosphere. Such signals travel along
field-aligned paths through the magnetosphere, undergoing modifica-
tions through the interactions with energetic electrons in the radiation
belts, and are received at the geomagnetic conjugate point in Qu�ebec,
Canada (Li et al., 2014; Helliwell and Katsufrakis, 1974). This experi-
mental setup is shown in Fig. 1.

The received signal is broadband in nature, which requires applying a
configurable signal processing chain in order to extract the signal of in-
terest, including for example a lightning filter, a demodulation stage, a
smoothing filter, and a signal thresholding filter. The challenge is: how
do we select the respective parameters in each stage in order to separate
the noise and enhance the detection of the transmitted signal? This
problem can lead to large search spaces which can make an exhaustive
search intractable.

While the typical signal detection approach uses a manually tuned
signal processing chain, alternate parameters from the broader permis-
sible range could provide other insights and emphasize different salient
features in the signal. In this work, we automate this search and pruning
hern Arizona University, Flagstaff, AZ, USA.
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Fig. 1. The transmitter at Siple Station, Antarctica, injects whistler-mode waves
(blue) into the magnetosphere, which undergo interactions with energetic
electrons (red) in the interaction region (yellow) near the equator. The modified
waves then continue along the field-aligned ducts and are received at the
receiver at the geomagnetic conjugate point in Qu�ebec, Canada. This figure is
adapted from (Li, 2015). (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Example of an MDIAG transmission from 6/23/1986 7:01:00 UT shown
in a time-frequency amplitude representation using a spectrogram. The signal
component is the narrowband transmission at 3 480 Hz, as part of the magne-
tospheric diagnostic format, MDIAG (Li et al., 2014) which is enclosed within
the black box.
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process while leveraging parallel computing to improve algorithm
response time. These performance gains can lead to better scientific in-
sights by exploring more of the parameter space, or enable real-time
signal detection. We develop a parallel, multithreaded implementation
that achieves good scalability on a multicore platform which improves
search throughput and present the results from our evaluation on data
from the Siple Station Experiment. Our methods show possible applica-
tions for improving the detection of events exhibiting magnetospheric
amplification and for highlighting different salient features based on the
searched parameter space.

2. The Siple station magnetospheric signal injection experiment

2.1. Overview

Siple Station, Antarctica, operated a powerful ELF/VLF transmitter
for controlled wave-injection experiments from 1973 to 1988. It enabled
a unique experiment in magnetospheric physics, whose observations
remain unmatched by any other instrument in providing long-running
observations of wave-particle interactions in the magnetosphere (Li,
2015). These data have improved our understanding of various magne-
tospheric phenomena and processes, but due to their historicity and
format, remain an underutilized dataset (Li et al., 2014).

We examine data from the 1986 portion of the dataset, which was
previously preprocessed to allow for digital analysis (Li et al., 2014). An
example of an MDIAG (magnetospheric diagnostic format) transmission
from 6/23/1986 7:01:00 UT is shown in spectrogram format in Fig. 2.
The spectrogram shows several features of interest that must be consid-
ered in the signal processing analysis. The narrow, vertical features
indicate lightning strikes, while the long, horizontal features correspond
with power line harmonics. Both such features interfere with detecting
the transmitted signal. The 2 s pulse of interest is the higher amplitude
signal at 3 480Hz, which can be seen starting around 3 s.

2.2. Siple experiment signal processing pipeline

The canonical signal analysis in this field is exemplified by the process
in (Li et al., 2014; Li et al., 2015). It consists of removing the
lightning-generated noise (called sferics) in the data, extracting the
narrowband signal amplitude based on transmission characteristics,
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smoothing to reduce noise, and thresholding to generate a simplified
signal for computing the fitness function. Sferics are strongly impulsive
and can easily dominate the received broadband signal. For simplicity,
sferics are primarily removed by zeroing portions of the signal that
exceed some number of standard deviations of the amplitude. Then, the
signal is mixed down to baseband by shifting the given transmission
frequency to 0 Hz and low-pass filtering to extract the narrowband
amplitude. A median filter is applied to smooth residual impulsive noise
from the sferics as well as artifacts from the low-pass filter. Finally, a
regression tree classifier (Breiman et al., 1984) thresholds the signal and
approximates the detectable signal amplitudes.

The quality of the signal extraction is evaluated by cross-correlating
the thresholded signal with a defined approximation of the signal,
which can be obtained based on the transmission characteristics. The
result is normalized to range between �1 and 2, which will serve as a
fitness function score in our approach (Section 2.2.3).

2.2.1. Signal processing pipeline stages

� Stage 1: Takes the entire dataset and thresholds by a single parameter,
the number of standard deviations, to remove the impulsive sferics
and produce a filtered dataset of the same length. The number of
standard deviations ranges between 0.5 and 2.0 to encompass the
range of coincident sferics (Said, 2009).

� Stage 2: Takes the sferic-filtered data and calculates the narrowband
amplitude at the known transmission frequency. This stage involves 4
steps: (a) mixing the signal down to baseband using a complex
exponential frequency shift; (b) generating a low-pass filter using
three parameters, the number of filter taps, the passband frequency,
and the roll-off frequency; (c) applying the low-pass filter; and (d)
downsampling the data based on passband frequency. The output of
this stage is the downsampled narrowband signal amplitude. Only the
low-pass filter, defined using the Remez algorithm (McClellan and
Parks, 1973), requires parameters. The number of taps ranges from
100 to 300, and the cut-off and roll-off frequencies each range from
100 to 200Hz. These parameter ranges are reasonable for the Siple
signal processing chain, similar to the values used in (Li et al., 2014).

� Stage 3: Takes the downsampled data and applies a naïve median
filter (Robinson, 2004) with a parameter-specified window size to
smooth the narrowband amplitude. The downsampling typically
shrinks the data by 10� 100x. The output of this stage is a smoothed
amplitude, where the data length is unchanged. Window sizes range
from 7 to 23, encompassing the value used in (Li et al., 2014).

� Stage 4: Fits a regression tree (Breiman et al., 1984) of depth specified
by the tree-depth parameter to estimate the time characteristics of the
signal. The regression tree output of this stage is used to compute the
fitness function score that determines the quality of the parameters



Fig. 4. Visualization of the sliding window used to compute the fitness function
score. The window (blue) is cross-correlated with the output of Stage 4 in Fig. 3.
This example achieves a metric score of 0.999. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of
this article.)
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used to detect the signal. The tree depth ranges from 1 to 3, as
determined empirically in this study.

The computational complexity of stages 1, 2, and 4 are OðnÞ and
OðnðklogkÞÞ for stage 3, where n is the number of data elements in the
signal and k is the window size (as k is small and n decreases due to
downsampling, the median filter is not computationally prohibitive).
Fig. 3 shows example output of stages 2–4 applied to the signal from
Fig. 2.

2.2.2. Fitness function
The fitness function score is computed by cross-correlating the ideal

received signal (based on the characteristics of the transmission) with the
processed data and normalizing to determine the highest score for a
given parameter configuration. An example of this evaluation process is
shown in Fig. 4, where the evaluation window specified by a domain
expert (in blue) slides over the regression tree output (in green) from
Stage 4 (from Fig. 3). For this application domain, the evaluation window
is a square pulse with �2 weight for the first 2 s, þ2 for the next 2 s, and
�1 for the next 3 s, in order to emphasize a signal pulse surrounded by
noise. For this particular example, the fitness function score is 0.999, and
this parameter configuration led to the highest ranked detection. The
maximum metric score of 2 would only occur for an ideal signal, i.e. a
signal without noise and with idealized amplification characteristics,
which is not achievable in practice.

2.2.3. Generating the evaluation window
The evaluation window in this particular application is selected to

capture the occurrence of the 2 s long main tone of interest. For the
purpose of detecting the MDIAG transmission, this tone is the strongest
component to detect. Scientifically, the tone is useful for characterizing
the conditions and degree of nonlinear amplification (Li et al., 2014; Li,
2015). Furthermore, the evaluation window design draws on knowledge
of the overall MDIAG format, where the period before and after the tone
are expected to have no transmitted signal. The following duration is
weighted to account for potential multipath and signal interference from
later transmitted tones.

3. Problem statement

Prior work (Li et al., 2014; Li et al., 2015) has manually selected
parameters for processing data like the one used here in the Siple Station
Experiment and then visually detected the transmitted signal. The above
mentioned manual process has significant drawbacks and is thus the
motivation for this work. We advance methods for the efficient auto-
mation of signal detection for the magnetospheric signal injection
Fig. 3. Visualization of the results of the filtering process for the transmission
shown in Fig. 2, with the transient signal readily apparent after filtering. The
narrowband signal amplitude time series after applying filter stages 2,3,4 are
shown in blue, red, and green respectively. This particular filter parameter
configuration produced the maximum fitness function score for detecting the
signal. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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experiment.
Due to the above mentioned drawbacks of manual signal processing

and parameter selection, this work takes a set of parameters given as input
before all signal processing, and selects the subset of these parameters that
yield the best signal detection based on the evaluation score (Section
2.2.2) defined by the evaluation window (Section 2.2.3). Thus, the signal
processing pipeline is supervised, as permissible parameter ranges need
to be given as input.

The signal processing pipeline consists of a series of stages; the output
of one stage is used as input for the following stage. Let P be a pipeline
with n stages. Each stage is denoted as Si where i ¼ 1;…;n, and jSij de-
notes the number of parameters for each stage. Each Si has a list of pa-

rameters, denoted as pi, where pi ¼ ðpji;pjþ1
i ;…;pjSi ji Þ, where the jth value in

this list defines the value of the jth parameter. We use the notation Sji to
denote the value of the parameter as applied to a specific stage. Note that

Sji may be an ordered list of parameters, if a given stage takes multiple
parameters as input. However, since we enumerate all of the possible
parameters for each stage up to jSij, a list of parameters applied to a single
stage is considered a single parameter.

We aim to find a list of parameters that discovers a signal in the data.
Fig. 5 shows possible enumerations in a simple pipeline that uses 1
parameter in S1, jS1j ¼ 1, and 2 parameters in the other stages, i.e., jS2j ¼
jS3j ¼ jS4j ¼ 2. The output of S4 is used to compute the fitness function
score that evaluates the quality of the signal.

Fig. 5 illustrates our search space. The hierarchy implies that after S11
has been processed, its results can be used in all subsequent stages of S2,
Fig. 5. Example 4-stage pipeline with jS1j ¼ 1, jS2j ¼ jS3j ¼ jS4j ¼ 2.
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and the output of S12 and S22 can be reused in S3 and so on. Assuming
hierarchical reuse, there are different trade-offs to how we search for the
best set of parameters. A breadth-first search (BFS) (Leiserson and
Schardl, 2010) or depth-first search (DFS) (Sedgewick, 2002) may be
more appropriate depending on the characteristics of the signal and the
quality of the subsequent parameter values in finding that signal. An
exhaustive search (evaluating all of S4 by enumerating the parameter
values for each stage) will yield the best possible result for the selection
of input parameters at each stage. Greater detail is given in upcoming
sections.

4. Search & pruning techniques

4.1. Breadth first search and pruning

A useful property of time-series data is that its correlation with a
reference signal can be incrementally evaluated after a pipeline stage has
been processed. This information can be leveraged to make pruning de-
cisions, i.e., whether to continue applying additional steps in a particular
pipeline variant or if the result so far does not warrant further parameter
exploration.

In Fig. 5, the output of the stages S1, S2, or S3 can be correlated with
the reference signal described in Section 2.2.3. A fitness score is obtained,
and can be compared to the ideal score (Section 2.2.2), or the scores of
other variants that have been evaluated at a given stage. Thus, a pruning
decision can be made. For instance, not continuing the execution of a
variant after S2 because its fitness score is low in comparison to the other
variants evaluated at S2.

In the context of the Siple signal processing chain, Fig. 6 shows
pruning points (red horizontal lines) in the example pipeline from Fig. 5.
After S2 the signal can be correlated with the metric pulse and evaluated
(Sections 2.2.2 and 2.2.3). If no pruning occurs, intermediate data be-
tween stages (e.g., the output of S12 as input into S13 and S23) may remain in
cache as input into successive stages. This is a performance benefit of the
BFS, and exploits locality in the memory hierarchy.

4.1.1. Stage pruning technique
This approach evaluates the fitness of a signal as computed using the

evaluation window (Section 2.2.3) after the execution of a stage in the
variant tree, excepting leaf nodes, as illustrated in Fig. 6. The results are
ranked by fitness value, and we retain a fraction of the top ranking
variants. This fraction, denoted as fSiSj , where 0 < fSiSj � 1 for each pair
of stages Si and Sj with j ¼ iþ 1, can be set by a user to control trade-offs
in performance and accuracy in this algorithm. For the Siple signal pro-
cessing chain, we prune after S2, which generates the signal amplitudes
required for computing the fitness score. Pruning too aggressively may
reduce the chances of finding the parameters that best recover the signal;
however, insufficient pruning may not adequately reduce the search
Fig. 6. Example of a BFS pipeline. The red horizontal lines indicate pruning
points, which occur after the amplitude outputs of S2. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version
of this article.)
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space.
4.2. Depth first search and pruning

The DFS and pruning approach executes using the following steps:

1. This approach begins by taking a sample of variants defined by the
pipeline configuration, out of all possible pipeline variants. The
number variants sampled is denoted by nt . There are initially jS1j �
jS2j � jS3j � jS4j variants in total. A sample of the total fraction of
these are executed.

2. A list L captures the parameter configuration for each pipeline variant
and its fitness value obtained at the last stage, for each of the nt
variants.

3. The fraction fDFS (where 0 < fDFS � 1) of L with the highest rank/
fitness score and determines the range of values of pipeline parame-
ters for these selected variants. The number of top ranking variants
becomes ntop ¼ dnt � fDFSe; the ceiling is taken as an integral number
is required.

4. Unprocessed variants whose parameters lie outside of the accepted
parameter ranges (defined by ntop) are pruned from the search and are
not executed.

5. The search begins again at Step 1, where the total number of variants
left to process has decreased because some of the variants have been
either processed (Step 1) or pruned (Step 4). Note that the number of
variants that have been pruned depends upon the characteristics of
the sample variants that have been executed. The choice of the nt
parameter determines how many variants are executed before prun-
ing, and fDFS controls how many top ranking variants are considered
to construct the parameter ranges for pruning the unprocessed vari-
ants. The search ends when all variants have been either executed or
pruned.

Consider Fig. 7, which differs from Fig. 5 with jS2j ¼ 3. We execute
the variants (denoted as v1, v6, v11) in green. Selecting nt ¼ 3 (we prune
after 3 variants have been executed), and using fDFS ¼ 2=3, then ntop ¼
⌈3ð2=3Þ⌉ ¼ 2. Assuming v1 and v6 have metric values greater than v11,
we use the minimum/maximum ranges bound by v1 and v6 to prune the
variants that have not been executed. We use the notation ½minvalue;
maxvalue� to denote the range of values which encompasses the best set of
parameters. The resulting parameter ranges from the ntop variants are:
S1 ¼ f½1; 1�g, S2 ¼ f½100;150�; ½100;150�; ½100; 150�g, S3 ¼ f½11; 11�g,
and S4 ¼ f½1;2�g. Thus, those variants in red will be pruned and not
executed. Those in blue are within the parameter ranges and may be
executed in the next iteration. Note that from Fig. 7, executing either of
the blue variants (v2, v5) only requires processing S4, as the previous
stages (in green) have already been executed.

There are benefits to using either breadth first or depth first searches
and associated pruning procedures. In terms of performance, for the Siple
Station Experiment signal chain, BFS can only filter after S2 and S3;
however, it has the benefit of being able to take advantage of locality
better than the DFS. Pruning using DFS can filter the execution of up to all
of the stages of entire variants. Thus, DFS is less sensitive to the execution
time of the individual stages than BFS (whichmust execute all variants up
to S2) for the Siple Station Experiment signal chain.

5. Evaluation

5.1. Datasets

The evaluation is conducted using the transmissions from the Siple
Station Experiment. The Siple-class consists of two datasets, one con-
taining a signal with an injected transmission (SipleSignal) and the other
only containing noise (SipleNoise). To demonstrate that our signal
detection method holds across different transmission conditions, we also



Fig. 7. Example of a DFS pipeline, where parameter values are shown. See text for description.
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conduct an evaluation using the Synthetic-class, which consists of a syn-
thetic signal (SyntheticSignal) and a noise (SyntheticNoise) dataset, which
have similar characteristics to the Siple-datasets. This is seen in spectro-
gram format in Fig. 8 (a) and from the results of the pruning process in
Fig. 8(b). The synthetic data has a 2 s pulse, preceded and followed by a
short amplitude ramp to resemble the 2 s main tone, and low frequency
and pulsed high frequency background signal interference, Gaussian
background noise, and Daubechies wavelets simulating the occurrence of
sferics. Amplitude and noise properties are scaled to match the observed,
real data, with signal amplitudes around 30 dB, signal interference be-
tween 40 dB and 150 dB, and the standard deviation for the gaussian
noise at 100. We utilize these two datasets to demonstrate that our fitness
metric discerns between signal and noise. All datasets consist of 375,000
data elements, corresponding to 15 s of data.
5.2. Experimental methodology

We implemented multithreaded implementations using OpenMP in
Cþþ and compiled using the O3 compiler optimization flag. The exe-
cutions occur on up to 16 cores of dedicated 2.40 GHz Intel Xeon E5-2630
v3 processors with 20 MB L3 cache. Response times are averaged over 3
trials unless otherwise noted.

5.2.1. Evaluation scenario 1 (E1)
The selection of the parameter values depends on domain-specific

knowledge, and we use ranges found in the literature (Said, 2009; Li
et al., 2014; Li et al., 2015):

� Stage 1: Lightning filter, f0:5;0:6;…;2:0g, jS1j ¼ 16.
Fig. 8. (a) Example of the synthetic data used in this study shown using a spectrogram
signal characteristics to the real Siple data. (b) Example visualization of the synthetic
series after applying filter stages 2,3,4 are shown in blue, red, and green respectivel
score for detecting the signal. (For interpretation of the references to color in this fi
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� Stage 2: Remez filter, Number of Taps: f100; 200; 300g, Cut-off and
roll-off frequency (both take the same values): f100;150;200g.
Permuting all combinations of these 3 parameters gives

�
�S2

�
� ¼ 33 ¼

27.
� Stage 3: Median filter, f7; 9;…;23g, jS3j ¼ 9.
� Stage 4: Regression tree, f1;2; 3g, jS4j ¼ 3.

Stage 4 generates a fitness function score. If we evaluate all possible
combinations of parameters without pruning the search, we obtain a total
of jS1jjS2jjS3jjS4j ¼ 11; 664 parameter combinations, or pipeline vari-
ants. Note that the output dataset size after downsampling in S2 is 6049
(from the original size of 375,000).

5.2.2. Evaluation scenario 2 (E2)
As mentioned in Section 2.2, the performance of the stages is a

function of the input size. We vary the degree of downsampling to assess
how input size may degrade performance by downsampling less
aggressively than that outlined in E1 at S2, where the dataset size be-
comes 31,250 after downsampling. This is 417% larger than E1.
Furthermore, the S3 window size is adjusted linearly and becomes:
f35;45;…;115g, jS3j ¼ 9. This adjustment to the window size is done to
preserve the desired smoothing characteristics in the data.
5.3. Evaluation metric validity

Fig. 9 (a) plots the histograms of the metric scores (fitness) of the real-
world SipleSignal and SipleNoise datasets in the context of exhaustively
executing all of the variants in scenario E1. The bimodal distribution
indicates that the metric separates the signal and noise. Fig. 9 (b) shows a
(time-frequency amplitude) representation, created to exhibit similar noise and
data after applying the pruning process. The narrowband signal amplitude time
y. This particular filter parameter configuration produced the maximum fitness
gure legend, the reader is referred to the Web version of this article.)



Fig. 9. Histograms of normalized fitness scores for filter parameter searches in evaluation scenario 1 of (a) SipleNoise in blue and SipleSignal in green, and of (b)
SyntheticNoise in blue and SyntheticSignal in green. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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similar plot, but for the Synthetic- datasets, which have a more pro-
nounced separation between the signal and noise cases in the bimodal
distribution. Furthermore, as the metric values span a significant range in
the signal and noise datasets, we conclude that the range of parameters
selected for the experimental evaluation is not biased towards finding
good metric values when searching for the best parameters.
Fig. 11. Same as Fig. 10, but for DFS.

Fig. 12. Response time profile breakdown of the breadth-first approach based
on the filter stage and the number of threads, and the resulting speedup for both
SipleSignal and SyntheticSignal datasets in scenario E1. The bar plot shows the
response time for the given stage for 1 and 16 threaded implementations, while
5.4. Multicore scalability analysis

We execute all of the variants outlined in E1 (an exhaustive search),
using up to 16 threads. In the breadth-first case, the threads are assigned
to an individual variant at each stage. In the depth-first case, threads are
assigned entire variants (all 4 stages) to process (e.g., v1, in green, in
Fig. 7). In all that follows, both searches use the OpenMP guided schedule
to assign loop iterations to threads as it was experimentally found to
achieve the best load balancing. Figs. 10 and 11 show the response times
for the breadth-first and depth-first searches, respectively, on both
SipleSignal and SyntheticSignal datasets. We observe that the response
times for the real and synthetic datasets are nearly identical, as the
performance of the pipeline is independent of the data characteristics.
Furthermore, from the two figures, we see that the response time of
breadth-first is slightly less than depth-first across all threads, yielding a
speedup of � 12� and � 9:6� using 16 cores, respectively. The breadth-
first approach better preserves locality over the depth-first approach.

Fig. 12 shows the response time by stage for the breadth-first search
for 1 and 16 threads and corresponding speedup by stage. S1 has 16
parameters and takes negligible time (thus has minimal speedup). S2
requires the majority of the execution time. This is partially because S2
takes the entire input data (n ¼ 375;000) and downsamples it for the
following stages (Section 2.2.1), thereby reducing the size of the input
data in S3 to n ¼ 6;049. Despite large variation in processing times
Fig. 10. Response time vs. number of threads using exhaustive BFS for Siple-
Signal and SyntheticSignal datasets in scenario E1. The right vertical axis shows
the speedup relative to the single-threaded implementation.

the lines show the resulting speedup for each stage (SipleSignal in green and
SyntheticSignal in red). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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between stages, there is a � 12� speedup across S2–S4, indicating that
the overall speedup is not diminished by a particular stage.

5.5. Breadth-first pruning

The breadth-first strategy prunes the pipeline between stages S2 and
S3, and S3 and S4. Fig. 13 shows a heatmap of the fraction of data retained
between stages and the ranking of the best variant found for E1. If we
only retain 10% of the data between both filtering points in the pipeline
(blue, bottom left corner), we can still obtain the parameter set that has a
metric value within the top 96% of all variants. Aggressively filtering
may significantly improve responses times. Although, given the response
time discrepancy between stages (Fig. 12), the large degree of



Fig. 13. A heatmap displaying the fraction of variants retained between Stage 2 and 3 (y-axis), and between Stage 3 and 4 (x-axis) for breadth-first pruning using
SipleSignal on scenario E1. The cell color indicates the ranking of the best fitness score found for the given ratio of retained data (a ranking of 1 indicates that the best
variant was found). The white inset text describes the resulting total fraction of S4 evaluations for each pair of retained ratios. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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downsampling decreases the ability of breadth-first to reduce large
computational loads in E1 as filtering occurs after S2. Pipelines with less
downsampling or even computational loads across stages would signifi-
cantly decrease response times with the breadth-first strategy.

5.6. Depth-first pruning

Unlike the breadth-first pruning, the depth-first pruning narrows the
search space by examining the parameters across all stages, thus it can
prune executing S2, which is a drawback of the breadth-first approach for
the Siple Station Experiment signal processing chain. Fig. 14 (a) plots the
response time vs. the metric ranking (a value of 1 corresponds to the best
metric value obtained through an exhaustive search) with 16 threads for
SipleSignal on E1. Because the depth-first search heuristic filters as a
function of the variants that have already been executed, it is sensitive to
the order that the variants are processed. Therefore, we generate a
schedule that randomly assigns variants to threads. In Fig. 14 (a), we
execute 100 randomly generated schedules (1 time measurement per
point) and show their distribution as a function of response time and
metric ranking for the two depth-first filter parameters (nt and fDFS). nt
controls how often the depth-first technique prunes after evaluating a
given number of variants. The points converge to a ranking of 1, and thus
the 100 measurements are plotted on top of each other in Fig. 14 (a). We
see a trade-off between the best metric value obtained and the response
time. Interestingly, examining the blue dots, we can obtain the parame-
ters that yield a metric value in the top 91% in < 2s. Fig. 14 (b) plots the
Fig. 14. A comparison of response time versus (a) the metric ranking of a search and
combinations on E1. The inset plot shows the faster run time and higher fraction disca
that parameters nt , the number of variants executed before filtering, and fDFS, the f
horizontal gray line corresponds to the exhaustive search time (see text for details).
referred to the Web version of this article.)
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response time vs. the fraction of variants that are pruned. The plot clearly
shows that aggressive pruning (those with nt � 64) that prune over
≳98% of variants significantly reduces response time (Fig. 14 (b), inset).
The horizontal lines in Fig. 14 show the response time of the exhaustive
search. The exhaustive search outperforms some of the configurations as
thread load imbalance may result from randomly assigning variants to
threads (which does not occur in the exhaustive search). The random
assignment of threads to variants is used to demonstrate the robustness of
the heuristic. In practice, a mapping of threads to variants that considers
the overall parameter distribution will improve filtering efficacy and
overcome the load imbalance for certain depth-first configurations. We
omit results for other datasets as they yield similar results.

5.7. Comparison of workload sizes after stage 2

The performance of the breadth-first pruning is more sensitive to the
computational load at each stage, in comparison to depth-first pruning.
We compare scenarios E1 and E2 where the latter does not aggressively
downsample (Section 5.2.2). We examine the performance of the
breadth-first and depth-first strategies as follows: 1) an exhaustive
search; and 2) aggressively prune with the following configurations for
the breadth-first and depth-first approach (shown in Fig. 13, blue, bottom
left, and Fig. 14, blue dots). Breadth-first parameters: fS1S2 ¼ 1, fS2S3 ¼
fS3S4 ¼ 0:1; and depth-first parameters: nt ¼ 16, fDFS ¼ 0:1.

The bar plots in Table 1 compare these scenarios on E1 and E2 on
SipleSignal. The output of S2 generates a larger dataset in E2 than E1;
(b) the fraction of S4 evaluations that are pruned for 24 different DFS parameter
rded region in greater detail. Colors correspond to the legend colors that describe
raction of nt kept that define the parameter ranges used by the heuristic. The
(For interpretation of the references to color in this figure legend, the reader is



Table 1
Comparison of E1 (upper) and E2 (lower) scenarios on SipleSignal. E2 downsamples less than E1 at S2. The response time profiles of the BFS exhaustive search are shown
(the breakdown for DFS by stage is similar, as illustrated in the comparison of exhaustive response times). S1 has been omitted in the figures due to negligible response
time. The rank of the best metric found is shown for the aggressive searches, where the DFS response time and metric are the mean of 100 randomized trials.

BFS Time (s) (Best
Ranking)

DFS Time (s) (Best
Ranking)

Stage Response Time Distribution

Scenario E1
Exhaustive (1 thread) 103.91 117.16
Exhaustive (16 threads) 8.81 12.17
Aggressive (16 threads) BFS: fS2S3 ¼ fS3S4 ¼ 0:1 DFS: nt ¼

16, fDFS ¼ 0:1
7.76 (0.962) 0.846 (0.993)

Scenario E2
Exhaustive (1 thread) 283.0 298.17
Exhaustive (16 threads) 25.83 27.10
Aggressive (16 threads) BFS: fS2S3 ¼ fS3S4 ¼ 0:1 DFS: nt ¼

16, fDFS ¼ 0:1
9.73 (0.957) 0.925 (0.994)
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therefore, the response time is greater in S3 in E2. The exhaustive search
executes all variants, thus finding the best set of parameter values. In the
exhaustive search, BFS slightly outperforms DFS in both E1 and E2.
Comparing the parallel exhaustive (16 threads) and parallel aggressive
searches on the breadth-first approach, the response time decreases by
13.5% (E1), and 165% (E2), and for the depth-first approach, these
values are 1 338% (E1) and 2 839% (E2). Both searches obtain greater
performance gains over the parallel exhaustive search when there are
larger computational workloads at S3 and S4. However, the depth-first
outperforms the breadth-first technique, both in performance and
metric value obtained (unless using an exhaustive search).

6. Performance modeling

We advance performance models for the breadth- and depth-first
searches in the supplementary material. We accurately predict the
response time for different pipeline filtering configurations. For instance,
when aggressively filtering, the breadth-first performance model predicts
a response time only 2.6 s less than the measured time of 97.07 s.

7. Related work and discussion

We have used BFS and DFS to optimize the set of parameters for
detecting a signal. We used a tree-based representation of the search
space that allows for a parallel search strategy, and for data reuse be-
tween stages. In this work, using the enumerated search across parameter
sets typically yields good parameter values in low-dimensionality search
spaces. However, global search strategies could be employed (Bergstra
and Bengio, 2012; Powell, 1994).

Other parameter searches are applicable as well. A randomized
parameter search generally outperforms a grid search for high (32) di-
mensions and was applied to neural networks (Bergstra and Bengio,
2012). Our work is effectively a parameter search on 4 dimensions, and
thus may not benefit from the randomized search. Furthermore, highly
iterative approaches such as genetic algorithms (Mitchell, 1998) or
gradient descent methods (Kiwiel, 2001) may find a good set of param-
eters. From our experiments it is not clear that gradient descent would
quickly converge to a unique global maxima using the fitness function,
which is a common pitfall of that class of methods (Bekey et al., 1966).
Furthermore, iterative algorithms are less conducive to the high
throughput parallel processing technique utilized in this work.
114
8. Siple detection results

We focused on a single MDIAG transmission at 6/23/1986 7:01:00
UT, SipleSignal, and a single noise dataset at 7:01:15 UT, SipleNoise. We
apply the parallel processing parameter search to the 50-min experiment
with 100 transmissions of the MDIAG format, from 7:00:00 UT to 7:50:00
UT. Each transmission (at 0 s and 30 s) and noise interval (at 15 s and
45 s) are datasets similar to SipleSignal and SipleNoise. Figs. 10 and 11
show that the performance of our pruning approaches is independent of
the data properties across this set of MDIAG transmissions, which is why
we do not show the performance for each individual transmission in the
50-min experiment. We show a histogram of the best metric score using
the parameters outlined in E1 for 200 signal and no signal datasets in
Fig. 15. A metric score of around 0.8 clearly separates the signal and
noise, successfully enabling detection of MDIAG transmissions.

While 9 signal datasets score below 0.8 and place within the same
range as the noise datasets, a closer examination of each of these datasets
show that no transmission was received. For 4 of these signals, the
experiment logs note that the scheduled transmissions could not be
conducted, which matches well with our detection result. However, the
other 5 signals occur at regular intervals, potentially indicating trans-
mitter or experiment troubles that are not in the logs. These results
demonstrate how a properly designed fitness function clearly separates
signal transmissions and noise. This can be extended to detect other
transmission formats for analysis, by altering the evaluation window, and
also be used as a diagnostic for evaluating the magnetospheric amplifi-
cation of naturally generated signals, such as banded chorus or hiss.

We evaluate how well the detected result recovers the original signal.
Examining the results from our SyntheticSignal dataset, we compare the
outputs of Stage 3 with the ideal, noiseless signal, as shown in Fig. 16. We
observe that the detected pulse and its timing matches well with the ideal
signal. The amplitude of the pulse is attenuated, which is expected due to
the presence of noise and the filtering operations, and the noise floor is
also higher.

9. Conclusion

This work advances novel automated detection of narrowband signals
in the Siple Station Experiment. We improve the detection of signals
transmitted through a noisy environment with complex physical in-
teractions by attaching an automated search process to the respective



Fig. 15. Histogram of the fitness function scores for
100 SipleSignal-like signal datasets (blue) and 100
SipleNoise-like noise datasets (red) from the experi-
ment at 6/23/1986 7:00:00 � 7:50:00 UT. (For
interpretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)

Fig. 16. Comparison of the results of the pruning
process for the synthetic data with the ideal, noiseless
signal. The narrowband signal amplitudes resulting
from filter stages 2 and 3 are the same as in Fig. 8.
The ideal narrowband signal without noise is plotted
in black.
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parameterized signal processing workflows.
In addition to improving the effectiveness and scalability of this

search, our approach enables reuse of intermediate evaluations among
computations exploring alternative parameter values in parallel. Using
the heuristics and signal evaluation criteria, pruning the search space
determines filter parameters that do not yield a good signal detection.
Our pruning procedure allows domain scientists to control the balance of
signal recovery quality and algorithm response time. Respectable
speedups are achieved, with execution times being reduced from> 100 s
to < 1 s. This progress offers new prospects for real-time monitoring of
transient signals in the space environment. Furthermore, the parameter
values obtained in our optimization could be mapped to the properties of
the magnetospheric plasma in future studies to characterize longer term
changes in magnetospheric conditions.

This work directly applies to “Siple-type” signals, where the signal of
interest is narrowband and with well-defined temporal durations. How-
ever, as the pipeline search process is independent of the particular
pipeline, modifications to pipeline by adjusting either the pipeline
115
parameter ranges or by altering the stages in the pipeline may extend the
applicability of this work. Naturally generated structured magneto-
spheric noise such as banded chorus or hiss could be explored in this
manner. Similarly, careful consideration of the appropriate pipeline,
pipeline parameters, and evaluation window could extend its potential
utility in other geoscience domains as well, such as in volcanic inflation
event detection (Li et al., 2016), groundwater storage fluctuations (Sil-
verii et al., 2016), monsoon prediction (Stolbova et al., 2016), and air
temperature variability studies (Jajcay et al., 2016), which similarly face
the challenge of extracting signals of interest from time series data and
the associated large parameter search space problem in multi-stage
processing workflows.
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