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Great Basin Geothermal Production

• Nearly 1 GW capacity in region

• Typical system produces 10 to 300 
MW

• 1 MW enough energy for 750-1,000 
homes

• Region has much greater potential

Distribution of Known Systems
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Major Challenge – Blind Systems

Blue Mt., Nevada

Productive wells commonly proximal 
to non-productive wells

Productive Well
Non-Productive Well

● 40% of known systems are blind
● Estimated 75% of all systems are blind
● Significant drilling / economic risk

● No surface expression
● Need to look for evidence elsewhere
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Synthesis of Multiple Parameters

Study Area

Relevant Geological and Geophysical parameters

● Fault patterns and structural setting
● Age of faulting (lidar data)
● Fault slip rate
● Regional strain rate
● Slip and dilation tendency of faults
● Temperatures of springs and wells (geochemistry)
● Temperature at 3 km depth
● Paleo-geothermal features
● Temperatures at 2 meters depth
● Earthquake density
● Gravity data – horizontal gradient
● Magnetic data
● MT data
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Favorable Structural Settings

Survey of Structure and Geothermal Systems

● 450 systems analyzed; ~250 cataloged

● Most fields not on mid-segments of major faults

● Most on less conspicuous Quaternary normal faults

● Higher temp systems generally on faults <750 ka

● Hybrid settings most productive

33%

22%

22%

10% 5% 4%
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Play Fairway Analysis
Nevada Geothermal Play Fairway Project

● Expert-derived workflow incorporating: 

● geology and geophysics parameters

● permeability

● sources of heat

● Constrained by known geothermal systems

● “Weights of Evidence” statistical analysis to 
derive sensitivities
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Play Fairway Analysis
Nevada Geothermal Play Fairway Project

Play Fairway 
Analysis Area

Later drilling suggests this has some predictive power!
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Define a Supervised Learning Problem

We wish to have unbiased prediction of exploration opportunity as a probability

we redraw the PFA workflow and
find a highly-engineered neural network
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Features and Labels

Features:

● Continuous numerical values

● Categorical geologic parameters

● > 1.6 million grid blocks within 
the study area 

Labels:

● Initially 34 positive and zero 
negative training examples

● Now approximately  100 each 
positive and negative examples
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Issues we have confronted for ML

● Small numbers of examples (initially only 34 positive benchmarks)
● Can lead to over-fitting

● Acquire data, data augmentation, regularization, dropout, transfer learning

● Few negative sites (initially none)
● Imbalanced training data leads to bias

● Acquire data, simulate negative sites

● Some features are not continuous (categorical)
● Requires special treatment to prevent bias

● Embeddings / smoothing / filtering / weighting / reassess data

● Which model architecture and parameters are the best ones?
● Want as few parameters as possible

● Optimize using genetic algorithms
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Highlight one problem and a solution

Consideration of categorical data – structural setting features 

● Categories were pre-ranked by experts on a numerical scale in terms of importance 
lending possibility of bias.

● Thought to be extremely important features for discrimination, yet they are poorly sampled.

● All positive examples exist where these features are known.

● Direct use of “experts” raw category values leads to poor results as + and- sites are widely 
separated that it is too easy to divide them … basically an extreme over-fitting problem or 
becoming stuck in a local minimum results.
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Categorical Features

embeddingexpert

density distance

or

or

OK as is
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What is the Problem?

X

original model FCNN – fixed weights

FCNN – trained with categorical FCNN – trained without categorical
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Solution

X (1) augment data set  
and pre-train network 
with categorical features
de-emphasized

(2) fine tune same 
network using all 
features and the real 
data set only

A Transfer Learning Approach

70-80%
accuracy

90-95%
accuracy
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A Promising Workflow

1) Augment real (+) and (-) training sites by neighbors on the map

2) Use genetic algorithms to find ‘best’ starting model architecture and 
hyper-parameters

3) Use best model as basis for GAN and / or noisy student data 
augmentation to create large simulated data set for transfer learning

4) Pre-train best model on this master data set with de-emphasis of 
categorical features

5) Fine tune network on all real training sites and all feature sets within 
our study area
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EXTRA SLIDES
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Things we have accomplished

In confronting these issues we have:

● explored data augmentation sampling directly from the PFA study area grids using 
teacher / noisy- student networks 

● used generative adversarial networks (GANs) to create “simulated” data sets for training 
and transfer learning

● considered the extreme of imbalance through outlier/novelty detection approaches

● used genetic algorithms to find “optimal” networks and parameters

● created “simulated” negative sites by sampling the study area at large

● explored various means to use categorical and numerical data together
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