#### MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020



# Assessing inference quality under model misspecification

An application to seismic inversion.

Andrea Scarinci PHD CANDIDATE, AERONAUTICS AND ASTRONAUTICS

Supervisors: Youssef Marzouk, Michael Fehler.

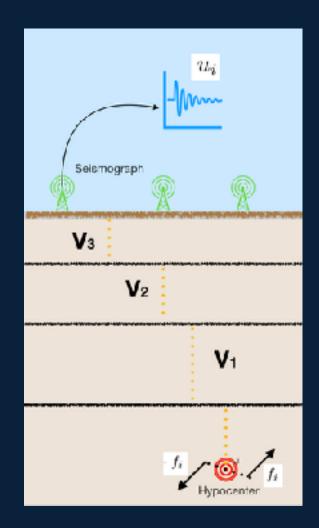
#### MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020



# What makes a good posterior?

**APPLICATION: BAYESIAN MOMENT TENSOR INVERSION** 

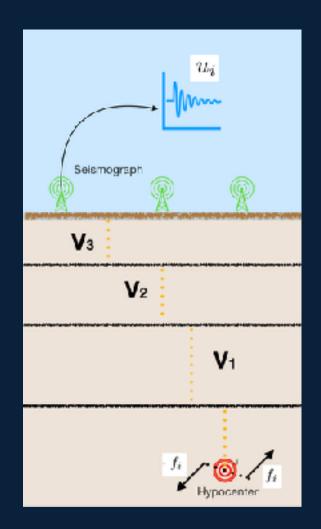




**APPLICATION: BAYESIAN MOMENT TENSOR INVERSION** 

MODEL

Earth Rescurces Laboratory

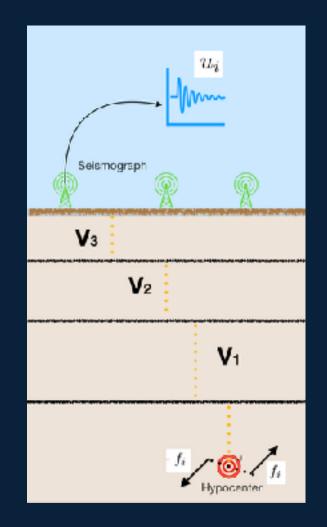


**APPLICATION: BAYESIAN MOMENT TENSOR INVERSION** 

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$







 $u_{i}$ Seismograph Vз V2 V1

**APPLICATION: BAYESIAN MOMENT TENSOR INVERSION** 

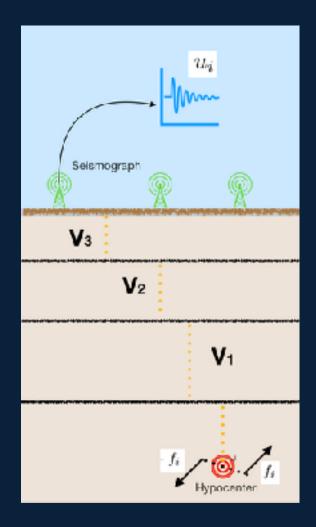
#### MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

 $\mathbf{X}$  = location of the earthquake



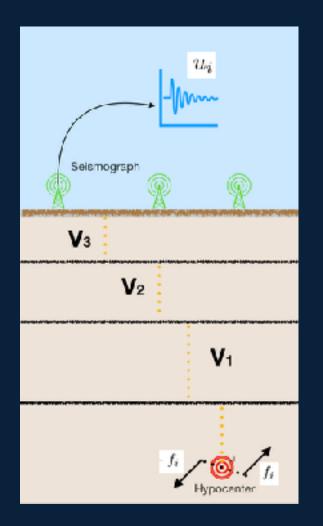
APPLICATION: BAYESIAN MOMENT TENSOR INVERSION MODEL  $\mathbf{X}$  = location of the earthquake  $\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$   $\mathbf{V}$  = velocity model



**APPLICATION: BAYESIAN MOMENT TENSOR INVERSION** 

#### MODEL

- $\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T \qquad \mathbf{V}$
- $\mathbf{X}$  = location of the earthquake
  - / = velocity model
  - **m** = moment tensor





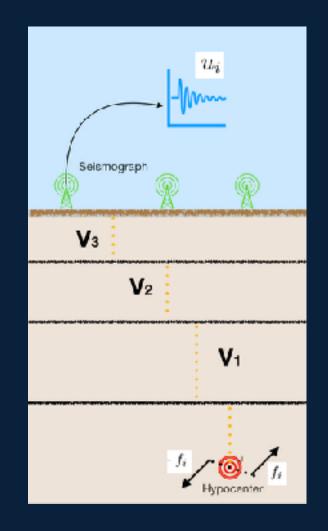
APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

#### MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

**m** = moment tensor





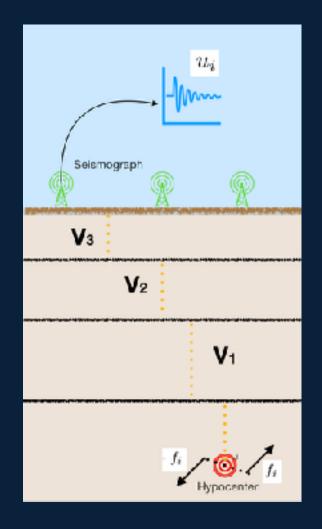
**APPLICATION: BAYESIAN MOMENT TENSOR INVERSION** 

#### MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

**m** = moment tensor



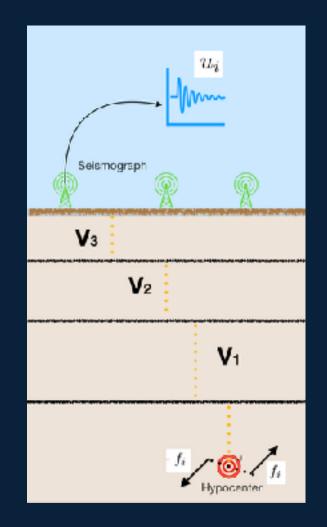


**APPLICATION: BAYESIAN MOMENT TENSOR INVERSION** 

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$





**APPLICATION: BAYESIAN MOMENT TENSOR INVERSION** 

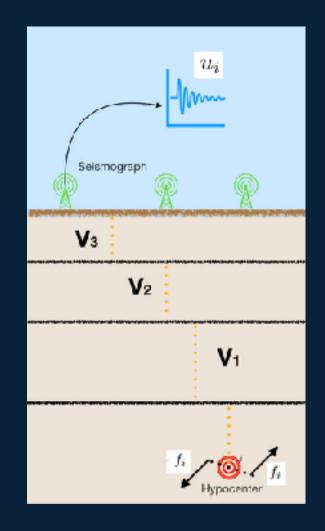
#### MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

#### DATA

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e}$  with:  $\mathbf{e} \sim \mathcal{N}(0, \mathbf{\Sigma})$ 





**APPLICATION: BAYESIAN MOMENT TENSOR INVERSION** 

#### **INVERSE PROBLEM**

#### MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

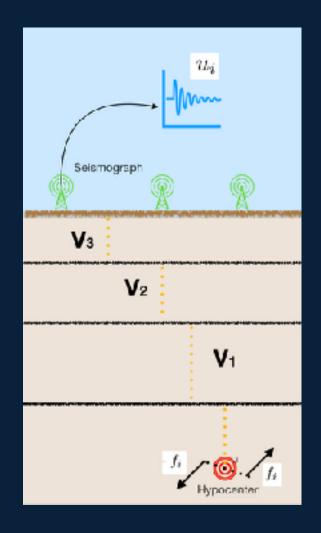
#### DATA

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e}$  with:  $\mathbf{e} \sim \mathcal{N}(0, \mathbf{\Sigma})$ 

#### QUANTITY OF INTEREST

 $\mathbf{m} = moment tensor$ 







#### **BAYESIAN INFERENCE**

Full characterization of the uncertainty in  $\ \mathbf{m}$ 

 $p(\mathbf{m} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{m}) \cdot p(\mathbf{m})$ 



#### **BAYESIAN INFERENCE**

Full characterization of the uncertainty in  ${\ensuremath{\,\,m}}$ 

 $p(\mathbf{m} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{m}) \cdot p(\mathbf{m})$ 

**PRIOR**  $p(\mathbf{m})$  probability distribution — encodes prior knowledge



#### **BAYESIAN INFERENCE**

Full characterization of the uncertainty in  ${f m}$ 

 $p(\mathbf{m} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{m}) \cdot p(\mathbf{m})$ 

**PRIOR**  $p(\mathbf{m})$  probability distribution — encodes prior knowledge

**LIKELIHOOD**  $p(\mathbf{y} \mid \mathbf{m})$  function — a statistical model involving  $\mathbf{u}(t)$ 



#### **BAYESIAN INFERENCE**

Full characterization of the uncertainty in  ${f m}$ 

 $p(\mathbf{m} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{m}) \cdot p(\mathbf{m})$ 

**PRIOR**  $p(\mathbf{m})$  probability distribution — encodes prior knowledge

### Misspecification



CAN WE ASSUME? V WELL-SPECIFIED  $V_* = V_0$ V MISSPECIFIED  $V_* \neq V_0$ 

DATA

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e}$  with:  $\mathbf{e} \sim \mathcal{N}(0, \mathbf{\Sigma})$ 

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$$



**V** MISSPECIFIED  $\Sigma$  UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$ 

LIKELIHOOD Not a natural way to express a Bayes update



**V** MISSPECIFIED  $\Sigma$  UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$ 

LIHOOD Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$



**V** MISSPECIFIED  $\Sigma$  UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$ 

**ELIHOOD** Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

 $\mathscr{L}(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m}))$ 



**V** MISSPECIFIED  $\Sigma$  UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$ 

**\_IHOOD** Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

$$\mathscr{L}\left(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m})\right)$$



**V** MISSPECIFIED  $\Sigma$  UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$ 

**IHOOD** Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

 $\ell_2^2$ 

$$\mathscr{L}(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m}))$$



**W** MISSPECIFIED  $\Sigma$  UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$ 

**LIHOOD** Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

$$\mathscr{L}\left(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m})\right)$$



**WISSPECIFIED**  $\Sigma$  UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$ 

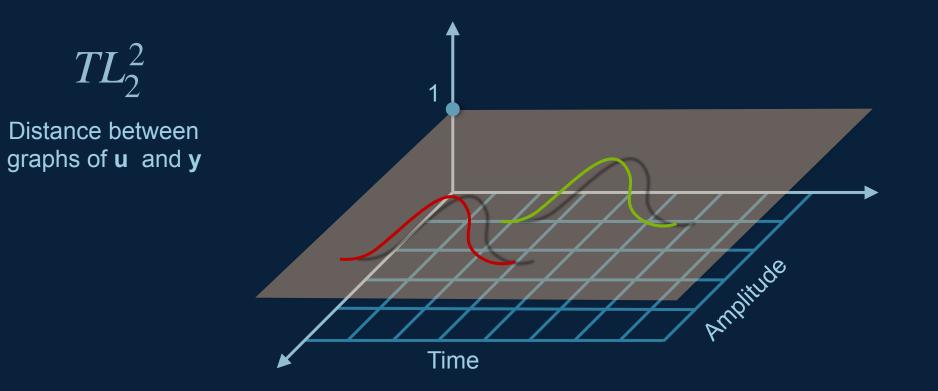
LIHOOD Not a natural way to express a Bayes update

Use of Gibbs Posterior

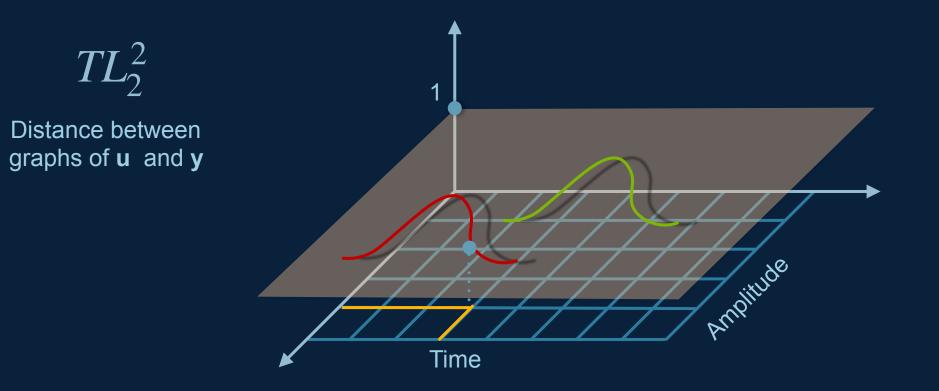
$$p(\mathbf{m}, s | \mathbf{y}) \propto s^{N} \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

$$\mathscr{L}\left(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m})\right)$$

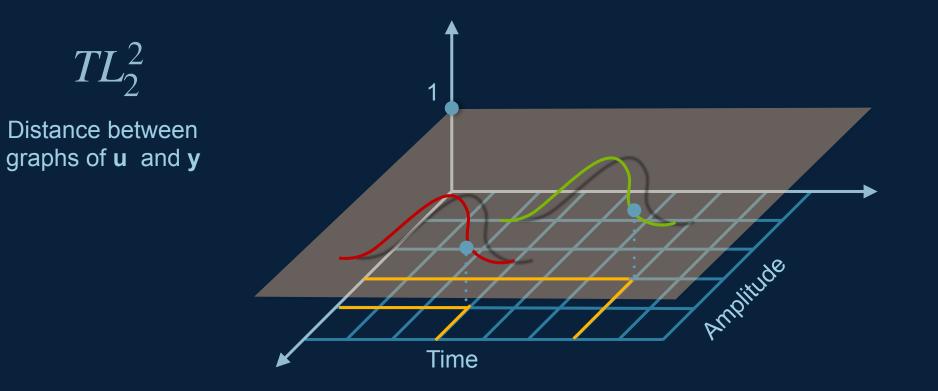




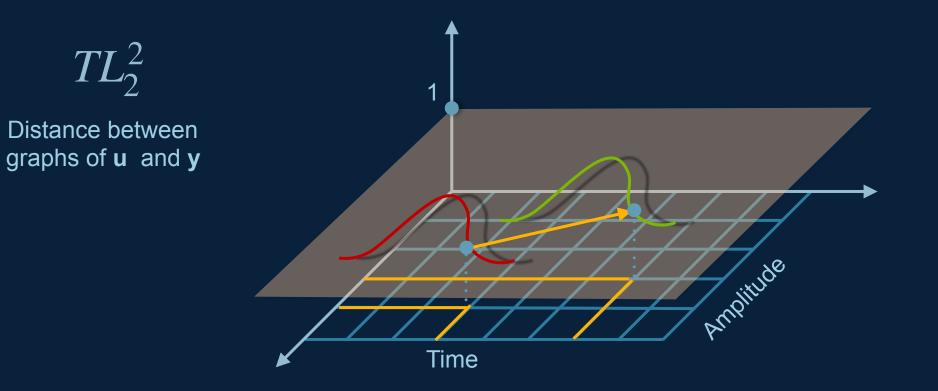




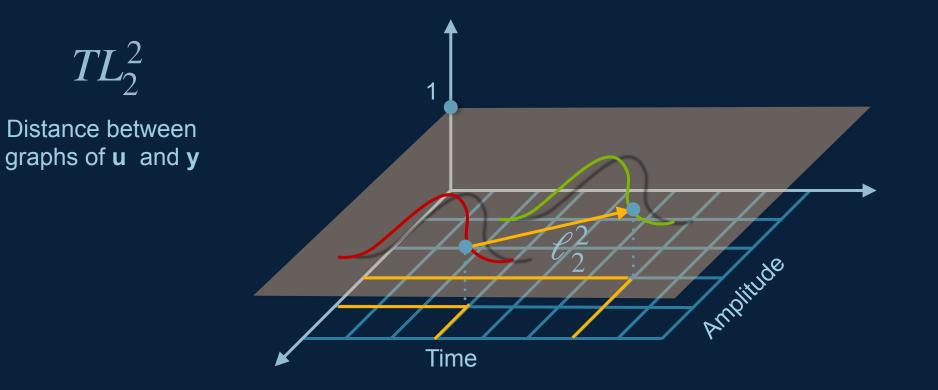














|           | V WELL-SPECIFIED | V MISSPECIFIED |
|-----------|------------------|----------------|
| Σ UNKNOWN |                  |                |



|           | V WELL-SPECIFIED | V MISSPECIFIED                                                                                                                                                       |
|-----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ UNKNOWN |                  | $\begin{aligned} \ell_2^2 & \text{Gibbs Posterior} \\ \text{Hierarchical solution} \\ TL_2^2 & \text{Gibbs Posterior} \\ \text{Hierarchical solution} \end{aligned}$ |



|           | V WELL-SPECIFIED                                                                                      | V MISSPECIFIED                                                                                          |
|-----------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Σ UNKNOWN | $\ell_2^2$ Gibbs Posterior<br>Hierarchical solution $TL_2^2$ Gibbs Posterior<br>Hierarchical solution | $\ell_2^2$ Gibbs Posterior<br>Hierarchical solution $\ell_2^2$ Gibbs Posterior<br>Hierarchical solution |



|           | V WELL-SPECIFIED                                                             | V MISSPECIFIED                                      |
|-----------|------------------------------------------------------------------------------|-----------------------------------------------------|
| Σ UNKNOWN | $\ell_2^2$ Normal-Gamma Hierarchical solution                                | Gibbs Posterior<br>$\ell_2^2$ Hierarchical solution |
|           | <i>TL</i> <sup>2</sup> <sub>2</sub> Gibbs Posterior<br>Hierarchical solution | $TL_2^2$ Gibbs Posterior<br>Hierarchical solution   |



|           | UNCERTAINTY                                                                                                                                                                                                                                                       |                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|           | V WELL-SPECIFIED                                                                                                                                                                                                                                                  | V MISSPECIFIED                                                                                        |
| Σ UNKNOWN | $\begin{aligned} \mathcal{\ell}_2^2 \\ \mathcal{\ell}_2^2 \end{aligned} \begin{array}{l} \text{Normal-Gamma} \\ \text{Hierarchical solution} \\ \\ TL_2^2 \end{aligned} \begin{array}{l} \text{Gibbs Posterior} \\ \text{Hierarchical solution} \\ \end{aligned}$ | $\ell_2^2$ Gibbs Posterior<br>Hierarchical solution $TL_2^2$ Gibbs Posterior<br>Hierarchical solution |



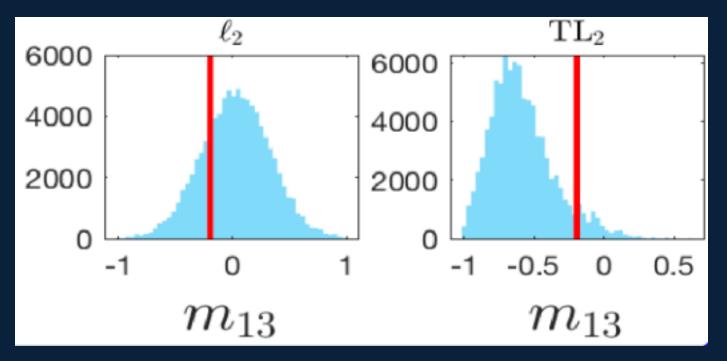
|                  | UNCERTAINTY                                                                                        |                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                  | V WELL-SPECIFIED                                                                                   | V MISSPECIFIED                                                                                        |
| <b>Σ UNKNOWN</b> | $\ell_2^2$ Normal-Gamma<br>Hierarchical solution $TL_2^2$ Gibbs Posterior<br>Hierarchical solution | $\ell_2^2$ Gibbs Posterior<br>Hierarchical solution $TL_2^2$ Gibbs Posterior<br>Hierarchical solution |

#### HOW CAN WE **QUANTITATIVELY** COMPARE POSTERIORS COMING FROM ALL THESE DIFFERENT SETTINGS?

## One problem, many models



### WHICH ONE IS BETTER? IS IT EVEN WORTH TO USE $TL_2$ ?





**EXPERIMENTAL SET-UP** 





#### **EXPERIMENTAL SET-UP**

(1) Draw  $\mathbf{m}_{true} \sim p(\mathbf{m})$ 



### **EXPERIMENTAL SET-UP**

(1) Draw  $\mathbf{m}_{true} \sim p(\mathbf{m})$ (2) Generate  $\mathbf{y}_{obs} \sim p(\mathbf{y} | \mathbf{m}_{true})$ 



### **EXPERIMENTAL SET-UP**

(1) Draw  $\mathbf{m}_{true} \sim p(\mathbf{m})$ (2) Generate  $\mathbf{y}_{obs} \sim p(\mathbf{y} | \mathbf{m}_{true})$ (3) Calculate posterior  $p(\mathbf{m} | \mathbf{y}_{obs})$ 



#### **EXPERIMENTAL SET-UP**

(1) Draw  $\mathbf{m}_{true} \sim p(\mathbf{m})$ (2) Generate  $\mathbf{y}_{obs} \sim p(\mathbf{y} | \mathbf{m}_{true})$ (3) Calculate posterior  $p(\mathbf{m} | \mathbf{y}_{obs})$ (4) Sample N  $\mathbf{m}_i \sim p(\mathbf{m} | \mathbf{y}_{obs})$ 



#### **EXPERIMENTAL SET-UP**

- (1) Draw  $\mathbf{m}_{true} \sim p(\mathbf{m})$
- (2) Generate  $\mathbf{y}_{obs} \sim p(\mathbf{y} \mid \mathbf{m}_{true})$
- (3) Calculate posterior  $p(\mathbf{m} | \mathbf{y}_{obs})$
- (4) Sample N  $\mathbf{m}_i \sim p(\mathbf{m} | \mathbf{y}_{obs})$
- (5) Score posteriors



#### **EXPERIMENTAL SET-UP**

REPEAT L TIMES

- (1) Draw  $\mathbf{m}_{true} \sim p(\mathbf{m})$
- (2) Generate  $\mathbf{y}_{obs} \sim p(\mathbf{y} \mid \mathbf{m}_{true})$
- (3) Calculate posterior  $p(\mathbf{m} | \mathbf{y}_{obs})$
- (4) Sample N  $\mathbf{m}_i \sim p(\mathbf{m} | \mathbf{y}_{obs})$
- (5) Score posteriors

### **EXPERIMENTAL SET-UP**

REPEAT L TIMES

- (1) Draw  $\mathbf{m}_{true} \sim p(\mathbf{m})$ 
  - (2) Generate  $\mathbf{y}_{obs} \sim p(\mathbf{y} | \mathbf{m}_{true})$



- (4) Sample N  $\mathbf{m}_i \sim p(\mathbf{m} | \mathbf{y}_{obs})$
- (5) Score posteriors

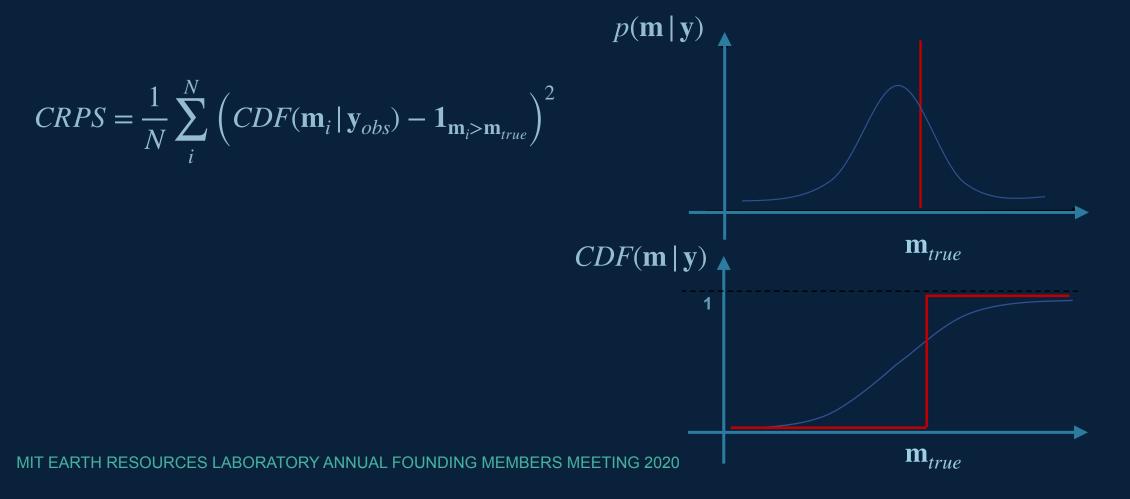


Report summaries for scores





#### **CRPS - CONTINUOUS RANKED PROBABILITY SCORE**







#### **CRPS - CONTINUOUS RANKED PROBABILITY SCORE**

URY ANNUAL FUUNDING MEN

$$CRPS = \frac{1}{N} \sum_{i}^{N} \left( CDF(\mathbf{m}_{i} | \mathbf{y}_{obs}) - \mathbf{1}_{\mathbf{m}_{i} > \mathbf{m}_{true}} \right)^{2}$$

$$MEASURE OF FORECASTING CAPABILITY CDF(\mathbf{m} | \mathbf{y})$$

$$THE LOWER THE BETTER$$

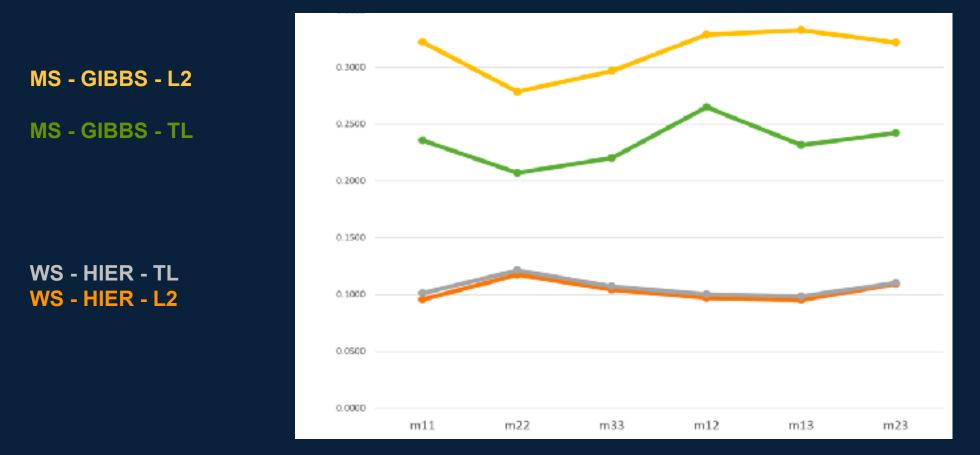
$$MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020$$

NG 2020

Results



#### **MEAN CRPS SCORES**

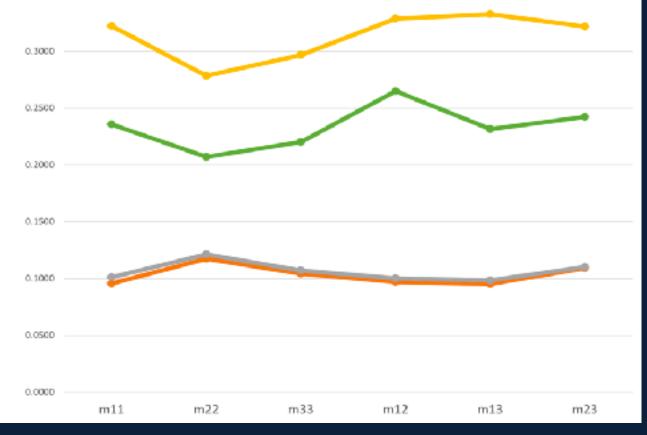


MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

### Results

### **MEAN CRPS SCORES**

MS - GIBBS - L2 MS - GIBBS - TL WS - ANALYTICAL - L2  $\Sigma$  KNOWN WS - HIER - TL WS - HIER - L2





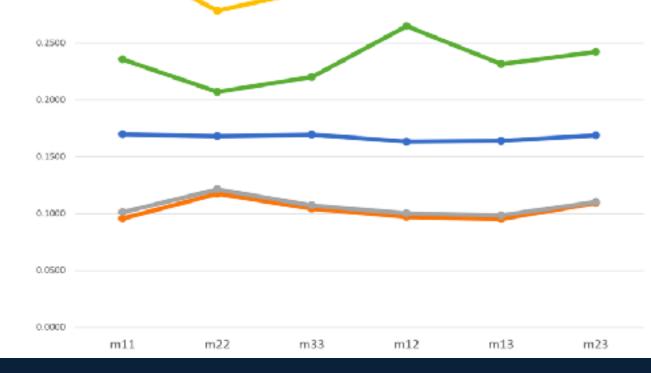
MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

0.3000

# Results

### **MEAN CRPS SCORES**

MS - GIBBS - L2 MS - GIBBS - TL WS - ANALYTICAL - L2  $\Sigma$  KNOWN WS - HIER - TL WS - HIER - L2





## Conclusions





We **quantitatively** proved that the  $TL_2$ -based likelihood provides better forecasters for different realizations of  $\mathbf{m}_{true}$ 



We observed that a model with known noise level (less uncertainty) does not necessarily provide for a better forecaster

# Ongoing work

More than a contradiction, a different purpose:





STATISTICALLY CONSISTENT FRAMEWORK

#### MORE THAN... "WHAT MAKES A GOOD POSTERIOR"

# What makes a good posterior for a given purpose