MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

Assessing inference quality under model misspecification

An application to seismic inversion.

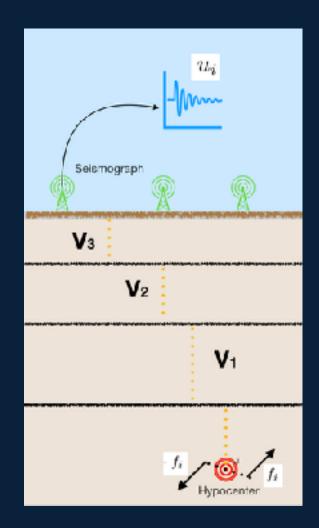
Andrea Scarinci PHD CANDIDATE, AERONAUTICS AND ASTRONAUTICS

Supervisors: Youssef Marzouk, Michael Fehler.

MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

What makes a good posterior?

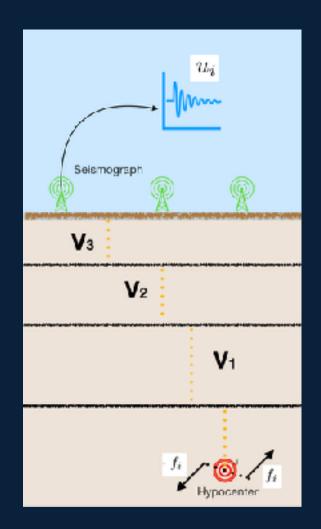
APPLICATION: BAYESIAN MOMENT TENSOR INVERSION



APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

MODEL

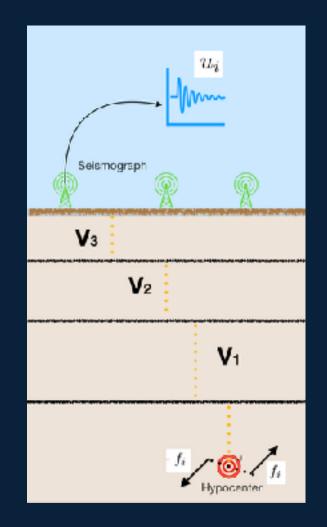
Earth Rescurces Laboratory



APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$



 u_{i} Seismograph Vз V2 V1

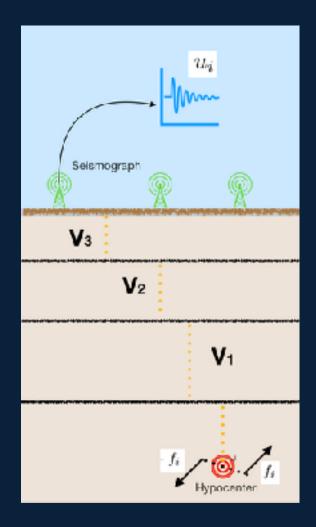
APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

 \mathbf{X} = location of the earthquake

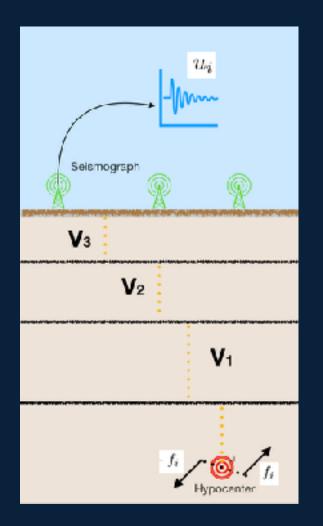
APPLICATION: BAYESIAN MOMENT TENSOR INVERSION MODEL \mathbf{X} = location of the earthquake $\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$ \mathbf{V} = velocity model



APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

MODEL

- $\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T \qquad \mathbf{V}$
- \mathbf{X} = location of the earthquake
 - / = velocity model
 - **m** = moment tensor

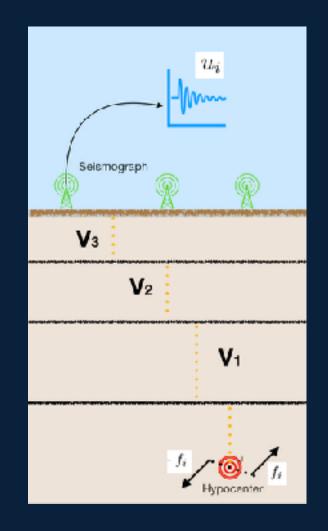


APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

m = moment tensor

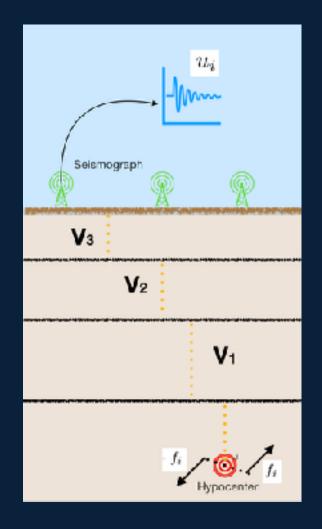


APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

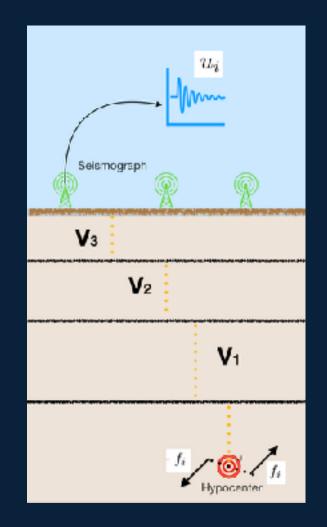
m = moment tensor



APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$



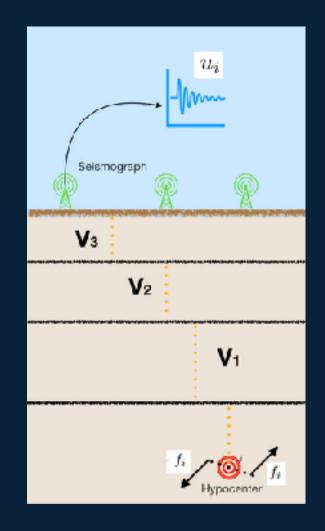
APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

DATA

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e}$ with: $\mathbf{e} \sim \mathcal{N}(0, \mathbf{\Sigma})$



APPLICATION: BAYESIAN MOMENT TENSOR INVERSION

INVERSE PROBLEM

MODEL

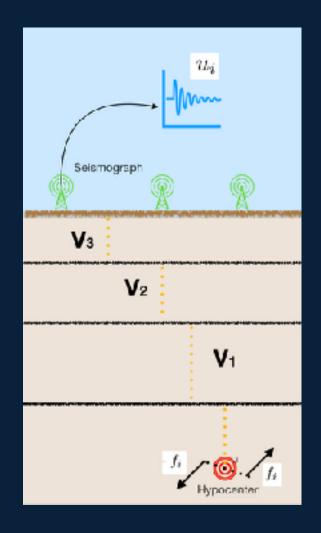
$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}, \mathbf{x}, t) \cdot \mathbf{m}^T$$

DATA

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e}$ with: $\mathbf{e} \sim \mathcal{N}(0, \mathbf{\Sigma})$

QUANTITY OF INTEREST

 $\mathbf{m} = moment tensor$



BAYESIAN INFERENCE

Full characterization of the uncertainty in $\ \mathbf{m}$

 $p(\mathbf{m} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{m}) \cdot p(\mathbf{m})$

BAYESIAN INFERENCE

Full characterization of the uncertainty in ${\ensuremath{\,\,m}}$

 $p(\mathbf{m} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{m}) \cdot p(\mathbf{m})$

PRIOR $p(\mathbf{m})$ probability distribution — encodes prior knowledge

BAYESIAN INFERENCE

Full characterization of the uncertainty in ${f m}$

 $p(\mathbf{m} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{m}) \cdot p(\mathbf{m})$

PRIOR $p(\mathbf{m})$ probability distribution — encodes prior knowledge

LIKELIHOOD $p(\mathbf{y} \mid \mathbf{m})$ function — a statistical model involving $\mathbf{u}(t)$

BAYESIAN INFERENCE

Full characterization of the uncertainty in ${f m}$

 $p(\mathbf{m} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{m}) \cdot p(\mathbf{m})$

PRIOR $p(\mathbf{m})$ probability distribution — encodes prior knowledge

Misspecification

CAN WE ASSUME? V WELL-SPECIFIED $V_* = V_0$ V MISSPECIFIED $V_* \neq V_0$

DATA

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e}$ with: $\mathbf{e} \sim \mathcal{N}(0, \mathbf{\Sigma})$

MODEL

$$\mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$$

V MISSPECIFIED Σ UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$

LIKELIHOOD Not a natural way to express a Bayes update

V MISSPECIFIED Σ UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$

LIHOOD Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

V MISSPECIFIED Σ UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$

ELIHOOD Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

 $\mathscr{L}(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m}))$

V MISSPECIFIED Σ UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$

_IHOOD Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

$$\mathscr{L}\left(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m})\right)$$

V MISSPECIFIED Σ UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$

IHOOD Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

 ℓ_2^2

$$\mathscr{L}(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m}))$$

W MISSPECIFIED Σ UNKNOWN

 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$

LIHOOD Not a natural way to express a Bayes update

Use of Gibbs Posterior

$$p(\mathbf{m}, s | \mathbf{y}) \propto s^N \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

$$\mathscr{L}\left(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m})\right)$$

WISSPECIFIED Σ UNKNOWN

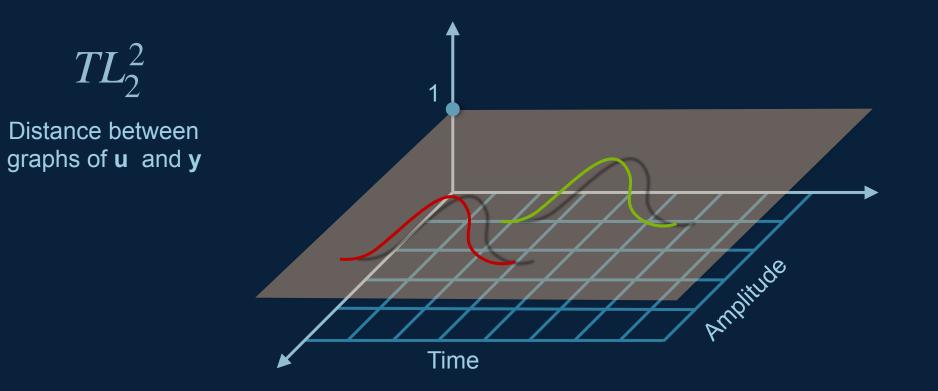
 $\mathbf{y}(t) = \mathbf{G}(\mathbf{V}_0, \mathbf{x}_0, t) \cdot \mathbf{m}^T + \mathbf{e} \qquad \mathbf{u}(t) = \mathbf{G}(\mathbf{V}_*, \mathbf{x}_*, t) \cdot \mathbf{m}^T$

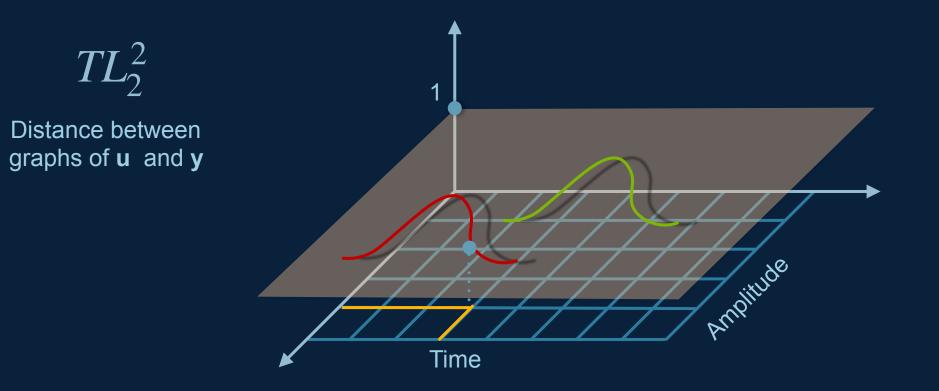
LIHOOD Not a natural way to express a Bayes update

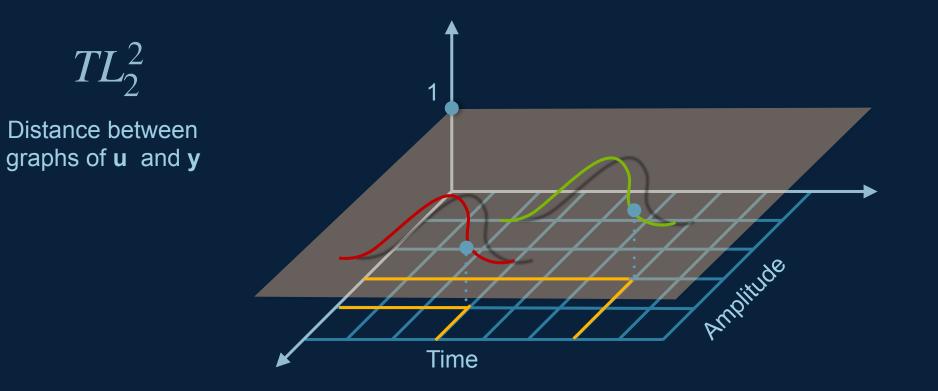
Use of Gibbs Posterior

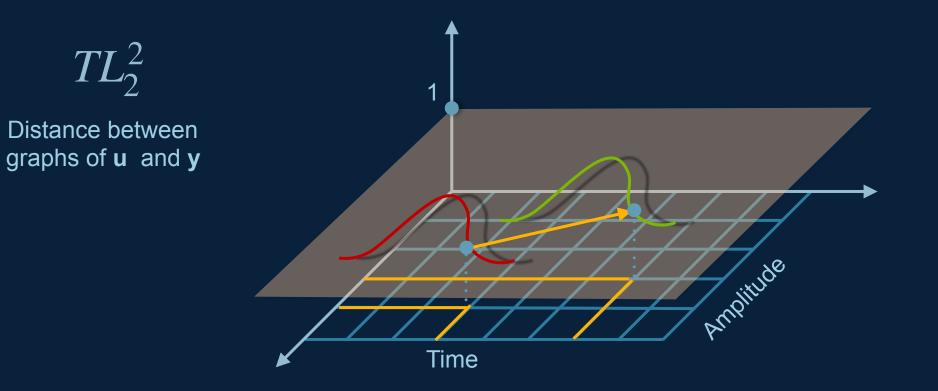
$$p(\mathbf{m}, s | \mathbf{y}) \propto s^{N} \exp\left(-s \mathscr{L}\left(\mathbf{y}(t), \mathbf{u}(t, \mathbf{m})\right)\right)$$

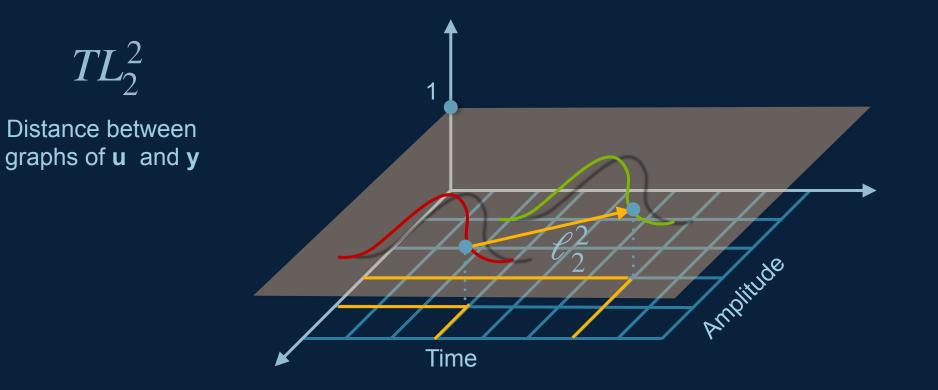
$$\mathscr{L}\left(\mathbf{y}(t),\mathbf{u}(t,\mathbf{m})\right)$$











	V WELL-SPECIFIED	V MISSPECIFIED
Σ UNKNOWN		

	V WELL-SPECIFIED	V MISSPECIFIED
Σ UNKNOWN		$\begin{aligned} \ell_2^2 & \text{Gibbs Posterior} \\ \text{Hierarchical solution} \\ TL_2^2 & \text{Gibbs Posterior} \\ \text{Hierarchical solution} \end{aligned}$

	V WELL-SPECIFIED	V MISSPECIFIED
Σ UNKNOWN	ℓ_2^2 Gibbs Posterior Hierarchical solution TL_2^2 Gibbs Posterior Hierarchical solution	ℓ_2^2 Gibbs Posterior Hierarchical solution ℓ_2^2 Gibbs Posterior Hierarchical solution

	V WELL-SPECIFIED	V MISSPECIFIED
Σ UNKNOWN	ℓ_2^2 Normal-Gamma Hierarchical solution	Gibbs Posterior ℓ_2^2 Hierarchical solution
	<i>TL</i> ² ₂ Gibbs Posterior Hierarchical solution	TL_2^2 Gibbs Posterior Hierarchical solution

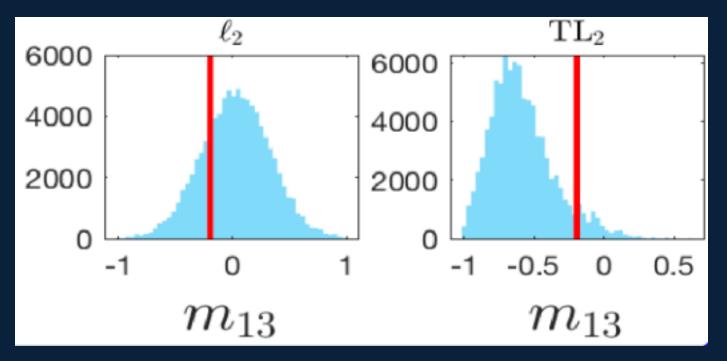
	UNCERTAINTY	
	V WELL-SPECIFIED	V MISSPECIFIED
Σ UNKNOWN	$\begin{aligned} \mathcal{\ell}_2^2 \\ \mathcal{\ell}_2^2 \end{aligned} \begin{array}{l} \text{Normal-Gamma} \\ \text{Hierarchical solution} \\ \\ TL_2^2 \end{aligned} \begin{array}{l} \text{Gibbs Posterior} \\ \text{Hierarchical solution} \\ \end{aligned}$	ℓ_2^2 Gibbs Posterior Hierarchical solution TL_2^2 Gibbs Posterior Hierarchical solution

	UNCERTAINTY	
	V WELL-SPECIFIED	V MISSPECIFIED
Σ UNKNOWN	ℓ_2^2 Normal-Gamma Hierarchical solution TL_2^2 Gibbs Posterior Hierarchical solution	ℓ_2^2 Gibbs Posterior Hierarchical solution TL_2^2 Gibbs Posterior Hierarchical solution

HOW CAN WE **QUANTITATIVELY** COMPARE POSTERIORS COMING FROM ALL THESE DIFFERENT SETTINGS?

One problem, many models

WHICH ONE IS BETTER? IS IT EVEN WORTH TO USE TL_2 ?



EXPERIMENTAL SET-UP

EXPERIMENTAL SET-UP

(1) Draw $\mathbf{m}_{true} \sim p(\mathbf{m})$

EXPERIMENTAL SET-UP

(1) Draw $\mathbf{m}_{true} \sim p(\mathbf{m})$ (2) Generate $\mathbf{y}_{obs} \sim p(\mathbf{y} | \mathbf{m}_{true})$

EXPERIMENTAL SET-UP

(1) Draw $\mathbf{m}_{true} \sim p(\mathbf{m})$ (2) Generate $\mathbf{y}_{obs} \sim p(\mathbf{y} | \mathbf{m}_{true})$ (3) Calculate posterior $p(\mathbf{m} | \mathbf{y}_{obs})$

EXPERIMENTAL SET-UP

(1) Draw $\mathbf{m}_{true} \sim p(\mathbf{m})$ (2) Generate $\mathbf{y}_{obs} \sim p(\mathbf{y} | \mathbf{m}_{true})$ (3) Calculate posterior $p(\mathbf{m} | \mathbf{y}_{obs})$ (4) Sample N $\mathbf{m}_i \sim p(\mathbf{m} | \mathbf{y}_{obs})$

EXPERIMENTAL SET-UP

- (1) Draw $\mathbf{m}_{true} \sim p(\mathbf{m})$
- (2) Generate $\mathbf{y}_{obs} \sim p(\mathbf{y} \mid \mathbf{m}_{true})$
- (3) Calculate posterior $p(\mathbf{m} | \mathbf{y}_{obs})$
- (4) Sample N $\mathbf{m}_i \sim p(\mathbf{m} | \mathbf{y}_{obs})$
- (5) Score posteriors

EXPERIMENTAL SET-UP

REPEAT L TIMES

- (1) Draw $\mathbf{m}_{true} \sim p(\mathbf{m})$
- (2) Generate $\mathbf{y}_{obs} \sim p(\mathbf{y} \mid \mathbf{m}_{true})$
- (3) Calculate posterior $p(\mathbf{m} | \mathbf{y}_{obs})$
- (4) Sample N $\mathbf{m}_i \sim p(\mathbf{m} | \mathbf{y}_{obs})$
- (5) Score posteriors

EXPERIMENTAL SET-UP

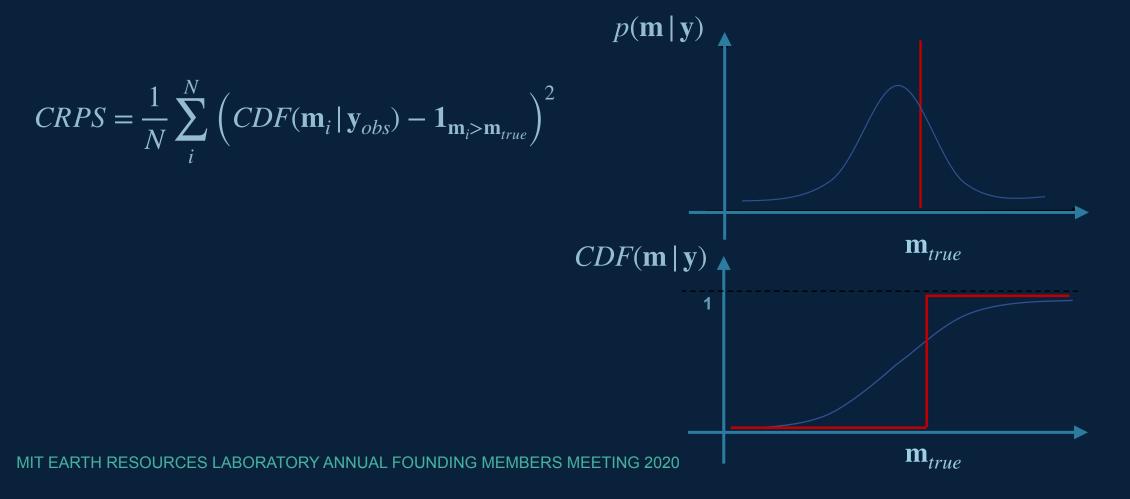
REPEAT L TIMES

- (1) Draw $\mathbf{m}_{true} \sim p(\mathbf{m})$
 - (2) Generate $\mathbf{y}_{obs} \sim p(\mathbf{y} | \mathbf{m}_{true})$

- (4) Sample N $\mathbf{m}_i \sim p(\mathbf{m} | \mathbf{y}_{obs})$
- (5) Score posteriors

Report summaries for scores

CRPS - CONTINUOUS RANKED PROBABILITY SCORE



CRPS - CONTINUOUS RANKED PROBABILITY SCORE

URY ANNUAL FUUNDING MEN

$$CRPS = \frac{1}{N} \sum_{i}^{N} \left(CDF(\mathbf{m}_{i} | \mathbf{y}_{obs}) - \mathbf{1}_{\mathbf{m}_{i} > \mathbf{m}_{true}} \right)^{2}$$

$$MEASURE OF FORECASTING CAPABILITY CDF(\mathbf{m} | \mathbf{y})$$

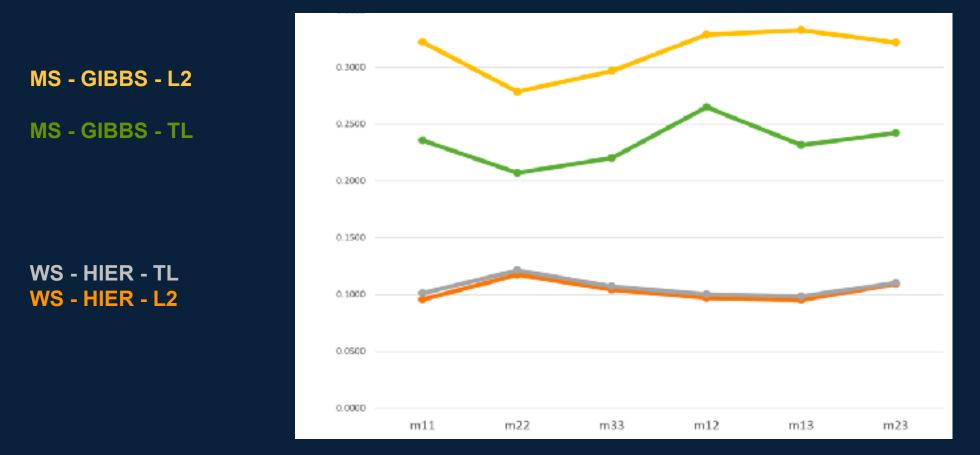
$$THE LOWER THE BETTER$$

$$MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020$$

NG 2020

Results

MEAN CRPS SCORES



MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

Results

MEAN CRPS SCORES

MS - GIBBS - L2 MS - GIBBS - TL WS - ANALYTICAL - L2 Σ KNOWN WS - HIER - TL WS - HIER - L2

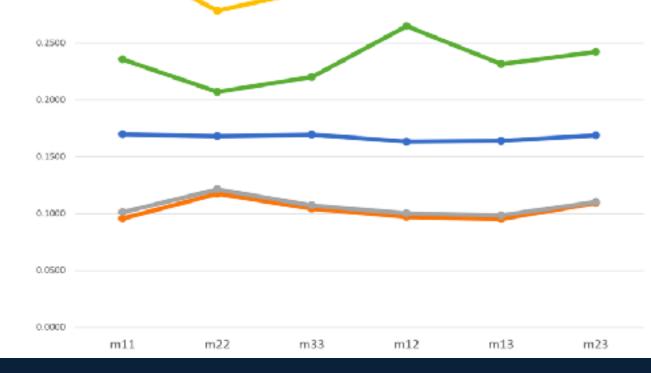
MIT EARTH RESOURCES LABORATORY ANNUAL FOUNDING MEMBERS MEETING 2020

0.3000

Results

MEAN CRPS SCORES

MS - GIBBS - L2 MS - GIBBS - TL WS - ANALYTICAL - L2 Σ KNOWN WS - HIER - TL WS - HIER - L2



Conclusions

We **quantitatively** proved that the TL_2 -based likelihood provides better forecasters for different realizations of \mathbf{m}_{true}

We observed that a model with known noise level (less uncertainty) does not necessarily provide for a better forecaster

Ongoing work

More than a contradiction, a different purpose:

STATISTICALLY CONSISTENT FRAMEWORK

MORE THAN... "WHAT MAKES A GOOD POSTERIOR"

What makes a good posterior for a given purpose