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y(t) = G(V0, x0, t) ⋅ mT + e with: e ∼ 𝒩(0,Σ)
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INVERSE PROBLEM

QUANTITY OF INTEREST

m =   moment tensor
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A Bayesian framework

p(m |y) ∝ p(y |m) ⋅ p(m)

BAYESIAN INFERENCE

Full characterization of the uncertainty in m

PRIOR probability distribution — encodes prior knowledge p(m)

LIKELIHOOD p(y |m) function — a statistical model involving     u(t)

POSTERIOR p(m |y) probability distribution — encodes data-updated knowledge 
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Misspecification

CAN WE ASSUME?
!   WELL-SPECIFIEDV

V* ≠ V0!   MISSPECIFIEDV

y(t) = G(V0, x0, t) ⋅ mT + e

V* = V0

u(t) = G(V*, x*, t) ⋅ mT

with: e ∼ 𝒩(0,Σ)

DATA

MODEL
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HOW CAN WE QUANTITATIVELY COMPARE POSTERIORS  
COMING FROM ALL THESE DIFFERENT SETTINGS?
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One problem,  many models
WHICH ONE IS BETTER? 

IS IT EVEN WORTH TO USE !  ?TL2
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Posterior scoring
EXPERIMENTAL SET-UP

(1) Draw mtrue ∼ p(m)
(2) Generate yobs ∼ p(y |mtrue)
(3) Calculate posterior p(m |yobs)
(4) Sample N mi ∼ p(m |yobs)
(5) Score posteriors

REPEAT L  
TIMES

Report summaries  
for scores 
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One score
CRPS - CONTINUOUS RANKED PROBABILITY SCORE
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One score
CRPS - CONTINUOUS RANKED PROBABILITY SCORE

CRPS =
1
N

N

∑
i

(CDF(mi |yobs) − 1mi>mtrue)
2

MEASURE OF FORECASTING 
CAPABILITY 

- 
THE LOWER THE BETTER

p(m |y)

mtrue

mtrue

CDF(m |y)
1
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Conclusions

We quantitatively proved that the ! -based likelihood provides 
better forecasters for different realizations of !

TL2
mtrue

1

We observed that a model with known noise level (less uncertainty) 
does not necessarily provide for a better forecaster2
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Ongoing work
More than a contradiction, a different purpose:

BETTER FORECASTER STATISTICALLY CONSISTENT 
FRAMEWORK

MORE THAN… 
“WHAT MAKES A GOOD POSTERIOR”

What makes a good 
posterior for a given purpose


